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Abstract

The focus of this research is uncertainty modeling for problems with random geometry. This

dissertation develops a computational framework, based on the eXtended Finite Element Method

(XFEM) and a Polynomial Chaos Expansion (PCE), for modeling heterogeneous materials with

uncertain material interfaces. The uncertain geometry is characterized based on a finite set of

random parameters, which requires a collection of measurement data or images. The XFEM is

particularly useful for problems with changing interface geometries, as remeshing is avoided since

a conforming mesh is not required. The XFEM is extended to the probability domain by a PCE

based on the random parameters defining the uncertain geometry, and a random level set function

implicitly defines the uncertain geometry. An intrusive PCE is implemented, which integrates the

expansion within the deterministic model. Problems with continuous and discontinuous solutions

at the material interface are solved, which utilize different enrichment functions. An accurate

integration approach is introduced for the stochastic domain for both types of solutions. For

problems with continuous solutions at the interface, a strategy for choosing a proper C0-continuous

enrichment function is presented. A PCE is best suited to approximating a smooth behavior of

the degrees of freedom, and this research shows that a proper C0-continuous enrichment function

leads to a smooth behavior of the degrees of freedom when the spatial mesh is converged. To

address solving problems with discontinuous solutions at the interface, an implementation of the

Heaviside enriched XFEM is presented which provides a robust approach for handling complex

interface configurations. A preconditioning scheme was developed to avoid ill-conditioning due to

small intersected element volumes. The Heaviside enriched XFEM extended to the probability

domain leads to a smooth behavior of the degrees of freedom regardless of the spatial mesh size.
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The C0-continuous enrichment requires simultaneous spatial and stochastic refinement to reduce

the approximation error, while the Heaviside enrichment function leads to a solution that converges

at low stochastic approximation orders for each spatial mesh size. Numerical examples include heat

diffusion and linear elasticity for problems containing a single inclusion with random geometry.
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Chapter 1

Introduction

It is critical to account for input uncertainty when modeling systems for engineering design,

as realistic conditions are not known precisely. All input data contain some amount of uncertainty,

which can be classified as epistemic and aleatory. Epistemic uncertainty is the variability due to

limited data and knowledge, and it is considered reducible by obtaining additional data. Aleatory

uncertainty is the natural randomness which cannot be reduced. There are two key challenges in

uncertainty analysis to account for the input variability. First, the input data must be characterized

to represent the uncertainty, which may include collecting sample data and engineering judgment.

The second challenge is the propagation of the uncertain inputs to outputs through the governing

stochastic partial differential equations (PDEs) of the system. The governing PDEs are stochastic

due to a random operator or right-hand side for uncertain loads, material properties, and boundary

conditions, which have been extensively studied [14, 2, 22, 9]. However, geometric uncertainty

presents additional challenges due to the uncertain domain definition, which is the focus of this

research.

The Finite element (FE) method is a widespread numerical approach for solving PDEs. For

systems governed by stochastic PDEs, the FE method may be coupled with a sampling approach

such as Monte Carlo (MC) simulation or stochastic collocation [1, 21, 34]. These sampling ap-

proaches require solutions for multiple sample points generated from the uncertain input data. A

more efficient approach is the spectral stochastic FE method (SSFEM) [4, 12, 14, 35]. In SSFEM,

a polynomial chaos expansion (PCE) [35, 5, 6, 13, 32, 7] approximates the degrees of freedom, and
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a Galerkin projection is used to solve for the coefficients of the expansion. The SSFEM is best

suited for problems in which the degrees of freedom vary smoothly with respect to the random pa-

rameters. For uncertainty in geometry, a sampling approach requires the generation of a new mesh

which conforms to the geometry for each sample. The eXtended Finite Element Method (XFEM)

[23, 11, 15] offers the advantage of not requiring a conforming mesh for problems with uncertain

geometry. However, the degrees of freedom may not depend smoothly on the random parameters.

This research addresses the smooth dependency and develops a computational framework, based

on the XFEM and a PCE, for modeling heterogeneous materials with uncertain inclusion geometry.

The work here is focused on predicting the behavior of composite materials with uncertain

inclusion geometry. The heat diffusion and elasticity response is studied for materials in which

the inclusion geometry is uncertain, which may be due to processing techniques, manufacturing

tolerances, and measurement errors. Understanding the behavior of these types of material systems

is critical, since the effective properties depend on the shape and size of the inclusions. The uncertain

inclusion geometry is characterized by a set of random parameters, and the statistics of the response,

such as the mean, variance, and probability distribution, are determined.

The first challenge of characterizing the uncertain geometry is accomplished by collecting

experimental data. For geometric uncertainty, measurement data or a set of images is collected

for numerous outcomes of the interface geometry. Various approaches exist for representing the

uncertain geometry, such as selecting specific geometric features as functions of random inputs.

For this work, the level set method [28] is used to represent the inclusion geometry. The level set

method is typically combined with the XFEM [11, 30, 31, 33] to implicitly define the inclusion

geometry according to a level set function. For uncertain geometry, a random level set function is

constructed based on a set of finite random variables using the collected experimental data. For

example, an approach for creating a random level set function using shape recovery and a collection

of images such as micrographs is proposed in [29]. The characterization of the random geometry

mathematically describes the uncertain input for solving the governing partial differential equation

of the system.
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The second challenge of propagating the uncertain inputs is the primary focus of this research,

and a characterization of the random inclusion geometry is assumed. For dealing with geometric

uncertainty, the XFEM is a natural choice for utilization in the computational approach. The

XFEM is a deterministic approach for modeling problems with non-smooth solutions, which arise

from geometric features such as holes, cracks, and inclusions. The XFEM combined with the

level set method [3, 10, 16, 30, 8] is particularly well-suited for modeling problems with changing

material interfaces, which arises for transient, optimization, and uncertainty analyses. A mesh

which conforms to the geometric feature is not required, therefore remeshing is avoided and a

fixed spatial mesh is utilized. However, a drawback of the XFEM is that an ill-conditioned system

of equations occurs when the ratio of volumes on either side of the interface in an element is

small [11, 27]. The ill-conditioning is an issue which must be addressed for a robust approach to

solving problems with moving or changing interface geometry. A technique is desired which avoids

ill-conditioning for any small element intersection without loss of solution accuracy.

A Monte Carlo (MC) simulation using the XFEM is a straightforward approach for solving

problems with uncertain geometry. A robust implementation of the XFEM is necessary such that

numerous interface configurations can be accurately modeled by the same spatial mesh without

loss of accuracy due to complex geometry or ill-conditioning. A robust XFEM implementation is

presented for modeling inclusion problems, and a preconditioning scheme is developed to avoid any

ill-conditioning. The XFEM is used to solve multiple interface configurations to study the system

dependency on the random parameters and compare with the PCE approximation. While a MC

simulation can be used to solve simple problems, it is infeasible for complex problems as it requires

numerous deterministic solutions.

The eXtended Stochastic Finite Element Method (X-SFEM) is a recently proposed approach

for modeling geometric uncertainty [26]. The spatial domain is augmented by a probability domain

by combining the XFEM with a PCE to approximate the solution as a function of the spatial

coordinates and random parameters. The PCE approximates the variation of the degrees of freedom

in the probability domain, and the choice of enrichment function affects the smoothness of the
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degrees of freedom over part or the entire domain. The X-SFEM has been studied for problems

with random domains [25] as well as problems with random inclusion geometry with C0-continuous

solutions at the material interface [24]. The application of PCE may lead to exponential convergent

rates if the degrees of freedom vary smoothly with respect to the random parameters. However,

the PCE may converge slowly or fail to converge if the behavior of the degrees of freedom is

non-smooth in the stochastic domain. For the case of random material inclusions, an enrichment

function tailored to the X-SFEM for problems with C0-continuous solutions was presented in [24]

which results in a smooth behavior of the degrees of freedom in the stochastic domain.

This research follows the work on X-SFEM for solving problems with random material in-

clusions. The combination of the XFEM and PCE provides the basis of the computational frame-

work for solving problems with uncertain geometry. The computational expense required to solve

stochastic partial differential equations utilizing PCE methods greatly increases with respect to the

number of random parameters. In this research, an intrusive PCE approach is used as opposed to

a non-intrusive sampling approach, which provides computational efficiency by manipulating the

elemental matrices to incorporate the stochastic approximation. Various enrichment functions for

problems with continuous and discontinuous solutions at the material interface are explored in this

work. Utilizing a C0-continuous and Heaviside enrichment function require different approaches

for solving problems with uncertain inclusion geometry.

The novel contributions of this research are summarized. The challenges associated with

the X-SFEM using a C0-continuous enrichment was studied, which is specific to solving problems

with C0-continuous solutions at the material interface. An implementation of the XFEM with a

Heaviside enrichment was developed and extended to the X-SFEM, which is applicable to solving

problems with discontinuous and C0-continuous solutions at the interface. A constraint is enforced

to maintain continuity of the solution at the interface for the latter. The contributions are classified

into three groups: X-SFEM with C0-continuous enrichment, XFEM with Heaviside enrichment, and

X-SFEM with Heaviside enrichment.

1. X-SFEM with a C0-continuous enrichment function
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1.1. Successful enrichment function

The XFEM is extended to the stochastic domain using a PCE for modeling problems with a

random inclusion using a C0-continuous enrichment [24]. A spectral PCE approximates the

variation of the degrees of freedom in the probability domain. A spectral PCE is best suited

for approximating a smooth variation over the entire domain, and the choice of the enrichment

function determines the behavior of the degrees of freedom. Therefore careful consideration is

needed for the choice of enrichment function in order to maintain accuracy and efficiency. The

basic elements of a successful enrichment function are identified [17], which lead to a smooth

variation over the entire domain. Note that the smooth variation for a C0-continuous enrichment

depends on a converged spatial mesh.

1.2. Partitioning of the probability domain

As in the XFEM, where a partition of the spatial domain is required for integration of an

intersected element, a partition of the probability domain is required for accurate integration in

the X-SFEM for the C0-continuous approach [17]. The element integration over the stochastic

domain is piecewise smooth depending on whether the element is intersected, and the intersection

of the element is determined by the nodal level set function. A partition of the probability domain

is constructed which aligns with the zero level set function for the nodes of the element. The

zero level set at the nodes of the element correspond to where the element becomes intersected

according to the random parameters. The piecewise smooth behavior of the element quantities

align with the zero nodel level set values in the stochastic domain.

1.3. Efficiency and accuracy

The implementation of various C0-continuous enrichment functions in the X-SFEM are studied

[17], and the effectiveness of using a spectral PCE is presented. Two stochastic approximation

approaches, a spectral PCE and a linear FE, are compared for efficiency and accuracy. A linear

FE approximation is better suited to approximate a non-smooth or piecewise smooth variation,
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however a higher number of unknowns are needed as compared to a spectral PCE. A spectral

PCE with a proper C0-continuous enrichment function is more efficient and as accurate as a

linear FE approximation.

2. Heaviside enriched XFEM

2.1. Generalized Heaviside enriched XFEM

When solving problems with moving or changing inclusion geometry, the implementation of the

XFEM needs to be robust and accurate for any potential interface configuration. In order to

improve accuracy for complex interface configurations, the Heaviside enriched XFEM implemen-

tation [15] is extended to multiple enrichment levels in order to accurately model neighboring

intersected elements and element intersected more than once. The method is applied to prob-

lems with varying inclusion geometry [18]. A robust XFEM implementation is required when

solving problems with changing interface geometries. The numerical method needs to be accu-

rate for any interface configuration, and the generalized Heaviside enrichment strategy enables

more complex interface geometries to be accurately modeled.

2.2. Preconditioning scheme

In addition to requiring accurate solutions for any potential interface configuration, a robust

implementation of the XFEM is needed. One drawback to the XFEM is that an ill-conditioned

system of equations may result when an intersected element has a small ratio of volumes on

either side of the interface. The ill-conditioning can introduce solution error, particularly for

iterative linear solvers and nonlinear problems. In order to eliminate any ill-conditioning, a

preconditioning scheme is introduced for the Heaviside enriched XFEM. The preconditioning

scheme, which consists of a geometric preconditioner and constraining degrees of freedom to

zero for small intersections, maintains a well-conditioned system with a low condition number

without loss of solution accuracy [18]. The preconditioning scheme adds to the robustness of

the XFEM implementation by accurately solving the problem regardless of the intersection
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configuration.

3. Heaviside enriched X-SFEM

3.1. Extension of the Heaviside enriched XFEM to the stochastic domain

The generalized Heaviside enriched XFEM is extended to the stochastic domain in order to model

problems with uncertain inclusion geometry [19]. The Heaviside enrichment is implemented to

solve problems with discontinuous solutions at the material interface. In contrast to using

a C0-continuous enrichment function, the Heaviside enrichment function leads to a smooth

variation of the degrees of freedom regardless of the spatial mesh size. However, the degrees of

freedom are nonzero (active) on a subdomain of the probability domain. Therefore instead of a

spectral PCE, the support of the polynomial basis functions is adjusted according to the active

subdomain while maintaining orthogonality. The examples show convergence at low orders

of the PCE. Additionally, the Heaviside enriched approach is applied to problems with C0-

continuous solutions by enforcing continuity at the interface using the stabilized Lagrange and

Nitsche methods. A higher convergence rate is achieved compared to using proper C0-continuous

enrichment.

3.2. Partitioning of the probability domain

As in the X-SFEM with a C0-continuous enrichment function, a partition of the probability

domain is necessary for accurate integration for the Heaviside enriched X-SFEM. The partition

is needed to align with the piecewise smoothness behavior of the element quantities with respect

to the random parameters. Due to the proposed support adjustment of the polynomial basis,

a partition is constructed which aligns with the support of the polynomial basis in addition to

the zero nodal level set functions.
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Chapter 2

Summary of Publications

A brief overview of each of the journal papers resulting from this dissertation are presented.

Publication 1 and Publication 2 have been peer reviewed and published by the journal. Publication

3 has been submitted for publication in Computational Mechanics. The journal papers are included

in the Appendix.

2.1 Publication 1: Extended stochastic FEM for diffusion problems with

uncertain material interfaces

The eXtended Stochastic Finite Element Method (X-SFEM) proposed by Nouy et. el. was

studied for diffusion problems with a single material inclusion. The uncertain geometry of the

inclusion was modeled by 1 and 2 random parameters. Two important challenges in the X-SFEM are

addressed in this paper. First, choosing an enrichment function is critical for accurately capturing

the C0-continuous solution in the spatial and probability domains. Various enrichment functions

are compared, and the basic elements of a successful enrichment are identified. For a successful

C0-continuous enrichment in the X-SFEM, the support of the enrichment function should include

all possibly intersected elements as well as the neighboring elements of the intersected elements

(blending elements). Also, the spatial support of the enrichment function should be global instead

of a local variation for a given realization. The second challenge addressed was accurate integration

over the stochastic domain, which is achieved by correctly partitioning the domain. An accurate

partitioning method for the stochastic domain is presented which aligns with where the interface
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intersects a node. In addition to addressing these important challenges, the efficiency and accuracy

of a spectral PCE and a linear FE are studied and compared. The spectral PCE showed the best

performance in terms of accuracy and convergence properties for a properly chosen enrichment

function.

2.2 Publication 2: A simple and efficient preconditioning scheme for Heav-

iside enriched XFEM

A robust formulation of the eXtended Finite Element Method (XFEM) is necessary when

solving problems with moving or changing interface geometries on fixed spatial meshes. An accurate

formulation is needed regardless of the specific interface geometry in relation to the spatial mesh.

Using the generalized formulation of the Heaviside enriched XFEM [20], neighboring intersected

elements and multiply intersected elements can be accurately modeled, and there are no issues

with blending elements. This paper presents a preconditioning scheme for the Heaviside enriched

XFEM which avoids the ill-conditioning which results when the ratio of volumes on either side of

the interface in an element is small. The geometric preconditioner is computed from the nodal basis

functions and the interface configuration. Therefore it is well suited to nonlinear problems with

fixed and moving interfaces since it is constructed prior to building the system of equations. The

geometric preconditioner combined with constraining degrees of freedom to zero for extremely small

intersections leads to an almost constant condition number regardless of the interface configuration

without loss of solution accuracy. Numerical examples are presented for discontinuous and C0-

continuous problems which compare the condition number and solution accuracy with and without

the proposed preconditioning scheme.

2.3 Publication 3: Heaviside enriched extended stochastic FEM for problems

with uncertain material interfaces

The Heaviside enriched XFEM is extended to the stochastic domain following the approach

of the X-SFEM to model problems with a discontinuous solution at the interface of an uncertain
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material inclusion. The Heaviside enrichment leads to a discontinuous solution in the spatial and

stochastic domains. In particular, the degrees of freedom are non-zero (active) for only a part of

the stochastic domain. In order to apply a PCE for approximation of the degrees of freedom in

the stochastic domain, the proposed approach adjusts the support of the stochastic approximation

according to the subdomain over which the degree of freedom is active. This support adjustment

increases accuracy and leads to a well-conditioned system of equations. Numerical examples are

presented for problems with discontinuous and C0-continuous solutions to examine accuracy and

the convergence rate. The C0-continuous problems, which require enforcement of an interface

constraint, are included in order to compare with the approach in Publication 1. The degrees

of freedom are smooth when using a Heaviside enrichment regardless of the mesh size, and a

higher convergence rate is achieved with the Heaviside enrichment approach for the C0-continuous

problems when compared to the C0-continuous enrichment.
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Chapter 3

Conclusions

3.1 Concluding Remarks

This dissertation focused on the development of a computational framework to solve problems

with geometric uncertainty. The specific problems studied in this work were heat diffusion and

linear elasticity of heterogeneous materials with uncertain inclusion geometry. The method was

developed for problems in 2D space with consideration given to the extension to 3D. The XFEM was

utilized to avoid remeshing due to the variation in geometry. Methods for solving the deterministic

problem with the XFEM using continuous and discontinuous solutions at the material interface

were both developed using different enrichment functions. The degrees of freedom were studied

as a function of the random parameters in order to understand the behavior and influence of the

choice of enrichment function, as well as the solution accuracy. A properly chosen C0-continuous

enrichment requires a converged spatial mesh for a smooth dependency of the degrees of freedom

on the random inputs. A robust implementation of the XFEM is needed for solving problems with

varying inclusion geometry, in which solution accuracy and efficiency is maintained regardless of

the interface configuration. The issues which affect accuracy include small element intersections,

neighboring intersected elements, and elements intersected more than once, which may not be

avoided with a fixed spatial mesh. The generalized Heaviside enrichment with the preconditioning

scheme, which can be applied to problems with continuous and discontinuous solutions at the

material interface, addresses each of these issues for a deterministic analysis.

The computational method developed for this dissertation combines the XFEM and a poly-
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nomial chaos expansion in order to solve the governing partial differential equation defined on a

random domain. The uncertain geometry is characterized based on a finite set of random param-

eters. The discretization of the problem augments the spatial domain with a probability domain

to solve for the degrees of freedom as functions of the random parameters. Various enrichment

functions were explored for problems with continuous and discontinuous solutions at the material

interface. While the specific application was heat diffusion and linear elasticity problems with a

single random inclusion, the method developed is applicable to a wide range of problems and for

multiple inclusions.

3.2 Future Work

Based on the continuation of this research and additional work performed during this research,

some potential directions for future work include:

• Extension to problems in 3D space The work in this research focused on solving problems in

2 spatial dimensions, and the extension to 3D would be a step forward for solving problems

with uncertain geometry. The element intersection configurations become more complex in

3 spatial dimensions, which must be understood for partitioning the domain for accurate

integration as well as developing a robust implementation to handle the changing geometry

of the interface.

• Strategy for extension to higher stochastic dimensions The theory for the extension of this

research to more than two random parameters has been discussed. The opportunity ex-

ists to implement the proposed framework in higher probability dimensions to understand

limitations and apply perhaps more efficient numerical techniques. The partitioning of

the stochastic domain needs to be addressed for greater than 2 random parameters. The

current research uses a constrained Delaunay triangulation to partition the 2D stochastic

domain for numerical integration, which allows an aligned partition. However, constrained

Delaunay triangulation does not exist in higher dimensions. Therefore a partitioning tech-
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nique for integration in the stochastic domain is needed. Additionally, the computational

cost exponentially increases as the number of random parameters is increased. Therefore

efficient techniques for higher dimensions would greatly improve the current approach.

• Preconditioning scheme for Heaviside enriched X-SFEM The preconditioning scheme de-

veloped for the XFEM was not used in the Heaviside enriched X-SFEM. However, ill-

conditioning also results due to small volumes in the stochastic domain with 2 random

parameters. In this research, it was necessary to constrain to zero the coefficients for

the degrees of freedom with very small stochastic supports. We studied various precondi-

tioning approaches to address the ill-conditioning, which included a global preconditioner

for the X-SFEM system of equations as well as an XFEM preconditioner applied to each

realization at a stochastic integration point. However, a robust implementation which

avoids any ill-conditioning was not completed. A preconditioning approach may help avoid

ill-conditioned systems in the X-SFEM and reduce the error associated with the current

approach of constraining coefficients.

• Intrusive versus non-intrusive methods The computational method developed in this work

focused on an intrusive PCE, which requires access to the source code when working with

existing deterministic models. A non-intrusive PCE or stochastic collocation method could

utilize existing deterministic codes to solve the stochastic problem. Also, a comparison of

the efficiency and accuracy between an intrusive and non-intrusive approach for geometric

uncertainty would benefit the research community.

• Application to transient analysis The extension of the proposed framework to the class of

problems with a dynamically evolving interface warrants investigation. The uncertainty

may be due to the initial inclusion geometry as well as how the geometry evolves. An

example of this problem type is a melting or solidification analysis. As part of this research

for considering this class of problems, a transient XFEM analysis was applied for solv-

ing a melting bar and inclusion problem. The diffusion, Hamilton-Jacobi, and Helmholtz
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equations were solved simultaneously to capture the evolving interface and temperature

distribution. The diffusion equation determines the temperature field, the Stefan condition

determines the interface velocity, the Helmholtz equation determines the velocity field, and

the Hamilton-Jacobi equation determines the evolved level-set field. The application of the

X-SFEM to solve transient problems with geometric uncertainty is another step forward

for this research.
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Abstract This paper is concerned with the prediction of
heat transfer in composite materials with uncertain inclu-
sion geometry. To numerically solve the governing equation,
which is defined on a random domain, an approach based
on the combination of the Extended finite element method
(X-FEM) and the spectral stochastic finite element method
is studied. Two challenges of the extended stochastic finite
element method (X-SFEM) are choosing an enrichment func-
tion and numerical integration over the probability domain.
An enrichment function, which is based on knowledge of
the interface location, captures the C0-continuous solution
in the spatial and probability domains without a conforming
mesh. Standard enrichment functions and enrichment func-
tions tailored to X-SFEM are analyzed and compared, and
the basic elements of a successful enrichment function are
identified. We introduce a partition approach for accurate
integration over the probability domain. The X-FEM solu-
tion is studied as a function of the parameters describing
the inclusion geometry and the different enrichment func-
tions. The efficiency and accuracy of a spectral polynomial
chaos expansion and a finite element approximation in the
probability domain are compared. Numerical examples of
a two-dimensional heat conduction problem with a random
inclusion show the spectral PC approximation with a suit-
able choice of enrichment function is as accurate and more
efficient than the finite element approach. Though focused
on heat transfer in composite materials, the techniques and
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observations in this paper are also applicable to other types
of problems with uncertain geometry.

Keywords X-SFEM · Polynomial chaos ·
Level set method · Uncertainty analysis · Enrichment

1 Introduction

Uncertainty in geometry is important when performing
numerical simulations to predict the behavior of a broad class
of engineering systems. The sources of geometric uncer-
tainty may include processing techniques, manufacturing
tolerances, and measurement errors. One important exam-
ple is predicting the effective properties of heterogeneous
composite materials. The effective properties directly depend
on the size, shape, and distribution of the inclusions within
the host matrix. Even with precise processing techniques,
these geometric parameters will vary throughout the mate-
rial. Extensive testing may be required to characterize the
resulting variability in material properties and performance.
A computational approach which accounts for geometric
uncertainty is essential for realistic predictions, can reduce
costly and time consuming experimental characterization,
and enables the study of manufacturing precision require-
ments.

For predicting the properties of composite materials, the
effective macroscopic properties depend on the details of
the microstructure. A homogenization technique which takes
into account the stochastic distribution of the microstructure,
such as one based on the self-consistent method [12], peri-
odic media [27], or the Mori–Tanaka method [21], can be
used to determine the macroscopic properties. The uncer-
tainty analysis is performed on a representative microstruc-
ture, and the homogenization technique is used to determine
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Fig. 1 Schematic of the model problem with random inclusion geom-
etry

effective macroscopic predictions. Another approach to
include the details of the random microstructure in the macro-
scopic predictions is a multiscale stochastic analysis, such as
in [1,13], which incorporates material features at different
spatial scales. For both of these approaches, a microstruc-
tural analysis that includes geometric uncertainty must be
performed.

The Extended Stochastic Finite Element Method
(X-SFEM) is a recently proposed method for solving partial
differential equations defined on random domains [22,24].
In this work, we study the X-SFEM in detail for solving a
stationary diffusion equation with random geometry. Specif-
ically, we are interested in solving the steady-state heat
conduction in a material with a single inclusion which has
uncertain geometry, as depicted in Fig. 1. This simple model
problem allows the features of the numerical approach to
be closely examined and describes the class of problems for
which this work applies. The spatial domain is denoted by
D ⊂ R

n , and (�,B, P) is the probability space on which the
geometric uncertainty is defined. Here � is the set of elemen-
tary events, B the σ -algebra of events, and P the probability
measure. The random variables ξ : � → R

d , for some finite
dimension d ∈ N, characterize the geometric uncertainty.
The domain D is comprised of two non-overlapping random
subdomains, D = D1(ξ) ∪ D2(ξ), and the closure of D is
denoted by D̄. The random interface which separates the two
subdomains is defined by �(ξ) = ∂D1(ξ) ∩ ∂D2(ξ). The
model problem consists of finding the random solution field
u(x, ξ) : D̄ × � → R, such that the following holds almost
surely in �,

− ∇T (k∇ui ) = f in Di (ξ)

(k∇ui )
T ni = qs on ∂Di ∩ �N

ui = us on ∂Di ∩ �D

u1 − u2 = 0 on �(ξ)

(k1∇u1)
T n1 + (k2∇u2)

T n2 = 0 on �(ξ) , (1)

for i = 1, 2, where k is the thermal conductivity, and ui

denotes the restriction of u toDi (ξ). A heat flux qs is specified
on a Neumann boundary, denoted by �N , with an outward
unit normal to Di denoted by ni . A temperature us is specified
on a Dirichlet boundary, denoted by �D . Volumetric heat
source terms, f , are specified in D. Isotropy is assumed for
the material subdomains, and the conductivity is defined as

k(x, ξ) =
{

0 < kmin < k1 < kmax < ∞ if x ∈ D1(ξ)

0 < kmin < k2 < kmax < ∞ if x ∈ D2(ξ)

(2)

with constants k1 and k2. Without loss of generality, we only
consider uncertainty in the interface geometry. Therefore we
assume that the conductivities in both material phases, source
terms, and boundary conditions are deterministic. For well-
posedness, k1 and k2 are bounded by a minimum and maxi-
mum value. We note that the model problem is deterministic
for a realization of the inclusion geometry (one possible out-
come of ξ ). The solution for a fixed inclusion geometry, u(x),
and the solution for a fixed spatial location, u(ξ), are both
C0-continuous across the material interface. The numerical
method must capture the non-smooth (only C0-continuous)
solution in the spatial and probability domains.

The stochastic nature of the inclusion geometry must
be described in order to solve the model problem. In gen-
eral, numerous sample measurements of the geometry are
required to construct an accurate characterization. Some
techniques for identifying a random field to describe the
random inclusion geometry are discussed in [7,10]. The
approach proposed in [29] converts a set of material images,
such as micrographs, into a probabilistic implicit description
of the geometry based on a finite set of random variables.
Using sample images is particularly practical for character-
izing random inclusion geometry for composite materials.

A straightforward approach to solve the model problem in
(1) defined on a random domain, is to use a Monte Carlo (MC)
simulation (or other stochastic sampling techniques such as
stochastic collocation [2,18,37]) coupled with a determin-
istic finite element solver. The solution of numerous deter-
ministic problems are needed, each requiring a conforming
mesh for the inclusion geometry. The computational costs
can quickly become expensive and possibly prohibitive for
problems involving complex geometries or large determin-
istic models. Other approaches for solving the model prob-
lem include transforming the governing equation so that it
is defined on a deterministic domain by using a stochas-
tic mapping [39] or the fictitious domain method [5]. These
approaches are; however, limited in the level of complexity
of the geometry that can be handled.

In the deterministic framework, the Extended Finite Ele-
ment Method (X-FEM) is an approach for modeling prob-
lems with non-smooth solutions without requiring a mesh

123

20



www.manaraa.com

Comput Mech

that conforms to material interfaces [19]. In X-FEM, an
enrichment function is used to capture the solution discon-
tinuity that occurs when the material interface intersects an
element. X-FEM is typically combined with the level set
approach [25,28] to describe interface geometries and to
define the enrichment function based on a priori knowledge
of the interface location [3,4,8,14,20,30,31]. The advan-
tages of this combination are that nodal data is used to
specify the geometry, changes in topology can be easily han-
dled, and a fixed non-conforming finite element mesh is used
for each deterministic solution. The X-FEM can be used
with a stochastic sampling technique to solve the stochas-
tic model problem without generating a conforming mesh
for each sample. However, numerous deterministic solutions
are required.

For problems where the solution of interest depends
smoothly on random inputs, a more efficient and widely-
used approach is the spectral stochastic finite element method
(SSFEM) [6,9,11,38]. The input parameters are modeled
as random variables, and the spatial approximation is aug-
mented with a stochastic approximation. In SSFEM, the
degrees of freedom in the probability domain are approx-
imated with a truncated polynomial chaos (PC) expansion
[9,11,35,38], and a Galerkin projection [40] is used to deter-
mine the coefficients. The result from SSFEM fully describes
the numerical solution in terms of the random variables rep-
resenting input uncertainties. The statistics of the quantity of
interest, such as the mean, variance, and probability distrib-
ution, can be determined directly from the expansion coeffi-
cients or by sampling the random variables in the resulting
polynomial solution. For the model problem (1), the non-
smooth solution behavior in the probability domain may
not be accurately captured by the spectral approximation
using SSFEM. This may lead to non-convergent solutions
and introduce numerical inaccuracies (e.g. Gibbs phenom-
enon). An alternative to the spectral approximation in the
probability domain is a finite element approximation [6],
which may better approximate the non-smooth solution by
increasing the number of elements in the probability domain.
However, the computational expense increases rapidly with
the number of elements. In the work by Wan and Karni-
adakis [33], an adaptive multi-element PC approach is used
to more efficiently address the non-smooth solution in the
probability domain. The work by Le Maître et. al. [16,17]
addresses capturing non-smooth solutions by using multi-
wavelets.

The X-SFEM is a combined approach which extends the
X-FEM to the stochastic framework [23]. The X-SFEM
addresses the issue of capturing the non-smooth solution
behavior in both the physical and probability domains.
A non-conforming finite element mesh is used for the
physical domain, where the non-smooth solution behav-
ior is captured by an enrichment function. The X-FEM

spatial approximation results in degrees of freedom which
are approximated in the probability domain. The spectral
PC approximation is used for the probability domain, and
through a proper enrichment the smoothness of the spatial
degrees of freedom can be improved. The choice of the
enrichment function is an important aspect in capturing the
non-smooth behavior and leading to an efficient and accu-
rate approximation. As with SSFEM, the numerical solution
represents the response of interest as an explicit function of
both the spatial and random variables. The X-SFEM is also
applicable to other problems involving variation in geometry
such as surface shape changes and moving boundary prob-
lems.

This paper presents in-depth studies of the accuracy and
convergence of the X-SFEM solutions to the model problem
defined in (1). Various enrichment functions, both standard
and tailored to X-SFEM, are investigated. The solution accu-
racy and smoothness of the degrees of freedom as a function
of the random variables describing the uncertain geometry
are studied by solving multiple deterministic problems with
X-FEM. In addition to the spectral approach considered in
[22], the accuracy and efficiency of a finite element stochas-
tic approximation is studied. The introduction of enrichment
functions to capture non-smooth solutions results in integrals
with non-smooth integrands in the spatial and probability
domains. For accurate numerical integration in the probabil-
ity domain, a partition approach is introduced which aligns
with the regions where the integrand quantities are piecewise
regular. The solution convergence using X-SFEM is investi-
gated for the two-dimensional domain shown in Fig. 1 with
geometric uncertainties described by one and two random
variables. Based on observations from the behavior of the
degrees of freedom and the solution convergence, the basic
elements of a successful enrichment function in X-SFEM are
identified.

The paper is outlined as follows: a basic description of the
level set method, X-FEM, and SSFEM are provided in Sects.
2–4. Details of X-SFEM and computational considerations
are described in Sect. 5. Numerical examples showing the
behavior of X-FEM and results from X-SFEM are discussed
in Sect. 6.

2 Level set method

The random inclusion geometry is described implicitly by the
level set method [25]. While the level set method is often used
to track moving interfaces on a fixed mesh [15,26,32,34],
herein the level set method is used to define the location of the
inclusion interface and its stochastic variability. The location
of the interface �(ξ) is implicitly defined by the iso-zero of
a random level set function, φ(x, ξ) : D × � → R. The
properties of φ(x, ξ) are given by
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(a)

(b) (c)

Fig. 2 The level set function for a (a) circular inclusion is a (b) cone,
shown here with negative (−) and positive (+) value in D1 and D2,
respectively. The iso-zero of the cone describes the inclusion geometry
as shown in (c)

φ(x, ξ) < 0 if x ∈ D1(ξ)

φ(x, ξ) > 0 if x ∈ D2(ξ)

φ(x, ξ) = 0 if x ∈ �(ξ) , (3)

where ξ : � → R
d is a vector of random variables that

describe the uncertainty of the inclusion geometry. The ran-
dom level set function is discretized according to the finite
element mesh of the spatial domain,

φ(x, ξ) =
∑
i∈I

Ni (x)φi (ξ) , (4)

where Ni (x) are the finite element nodal basis functions, I
is the set of all nodes in the finite element mesh of D, and
φi (ξ) is the random level set function at node i .

In this work, the signed distance function is used to define
the level set function. The random level set functions at each
node are given by

φi (ξ) = ±min ‖xi − x�(ξ)‖ , (5)

where x�(ξ) is the interface location and ‖ · ‖ denotes the
L2-distance in the physical space. The sign of φi (ξ) is neg-
ative in D1 and positive in D2. An example of the level set
function for a circular inclusion is shown in Fig. 2. In this
example, the circular inclusion is one possible outcome (real-
ization) of the random geometry, and in this case the level
set function represents a cone. The iso-zero of the level set
function defines the boundary of the circular inclusion.

To construct φi (ξ) in the numerical examples that follow,
the interface location is defined as a function of the random
variables, x�(ξ). At each node in the finite element mesh,
realizations of φi (ξ) are computed according to the signed

distance function in (5). An approach to construct the random
level set function for a more realistic application is to collect
a set of images that capture the variation in geometry being
modeled. The random level set function is then defined using
the approach outlined in [29].

3 Extended finite element method (X-FEM)

In this section, we consider solving the deterministic model
problem for a particular realization of the random inclusion
geometry. That is, the inclusion geometry is specified by par-
ticular values of ξ . To accurately capture non-smooth solu-
tions resulting from material interfaces, the traditional finite
element method (FEM) requires a mesh that conforms to the
inclusion geometry. The Extended Finite Element Method
(X-FEM) eliminates the requirement of a conforming mesh
by enriching the traditional FEM approximation with a suit-
ably constructed enrichment function [19,31].

For the approximation of the solution, we introduce the
weak formulation of the model problem. Let u ∈ V be
the solution and v ∈ V0 an admissible test function. The
space V = H1(D) is the Hilbert space consisting of func-
tions with square integrable first derivatives and V0 = {v ∈
H1(D), v|�D = 0}. The weak form of the deterministic
model problem is stated as: Find u ∈ V such that u = us on
�D and∫

D
(k∇u)T ∇vdx =

∫
D

f vdx +
∫

�N

qsvds ∀v ∈ V0 ,

(6)

where s denotes the boundary of D. Consider a finite element
mesh, Th , for the domain D which consists of elements that
do not necessarily conform to the interface �. The X-FEM
approximation û(x) of the solution u(x) is

û(x) =
∑
i∈I

Ni (x)ui +
∑
i∈I ∗

Ni (x)�(x)ai , (7)

where �(x) is an enrichment function. In this work, we use
bilinear nodal basis functions for Ni (x). The set I contains
all the nodes in Th , and the set I ∗ ⊆ I contains the enriched
nodes. The set of enriched nodes are determined by the inter-
section of the interface and the support of the enriched nodal
basis functions, Ni (x)�(x), and therefore depend on the
choice of the enrichment function. In other words,

I ∗ = {i ∈ I : Si ∩ � 
= 0} , (8)

where Si denotes the support of the enriched nodal basis
function at node i . The first term in (7) is the standard FEM
approximation. The second term in (7) is added to capture the
non-smooth solution at material interfaces. The unknowns,
ui and ai , are referred to as regular and enriched degrees of
freedom, respectively.
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Fig. 3 Illustration of X-FEM terminology and the triangulation of
intersected elements for a circular inclusion

The a priori knowledge of the interface location is incor-
porated into the enrichment function by defining �(x) as a
function of φ(x). Since the solution for the model problem
has a discontinuous first derivative at the interface, a natural
choice for the enrichment function is the absolute value of
the level set function. In this work, we implement various
C0-continuous enrichment functions, which satisfy continu-
ity of the solution across the interface. Enrichment functions
that are not C0-continuous require a constraint equation to
enforce continuity of the solution across the interface.

The following defines some common X-FEM terminology
used throughout this paper. Active nodes refer to the nodes
of intersected elements, as shown in Fig. 3 for a circular
inclusion. Reproducing elements have all active nodes, stan-
dard elements have no active nodes, and blending elements
have some active and some non-active nodes. Typically, I ∗
is defined as either the nodes of reproducing elements or the
nodes of reproducing and blending elements. A discussion of
possible issues with the approximation in blending elements
and a general approach for modifying enrichment functions
to avoid such issues is presented in [8].

To construct the system of equations, the approximation
in (7) is substituted into the weak form (6). Following the
Bubnov–Galerkin method, the test functions v are defined
using the same basis functions as Ni (x). The integration in
(6) is performed over each element and assembled to form the
system of equations. In intersected elements, Ni (x)�(x) is
non-smooth by construction. For an accurate integration over
an intersected element, we partition the element domain by a
triangulation for piecewise integration. The triangulation for
a circular inclusion with a finite element mesh constructed
from recangular elements is shown in Fig. 3. The triangula-
tion is only used to perform numerical integration and does
not insert any additional degrees of freedom.

To solve the stochastic model problem, a MC simula-
tion (or other stochastic sampling technique) can be used
with X-FEM to repeatedly solve the deterministic problem
for realizations of the interface geometry. The advantage of
X-FEM is that conforming meshes are not generated for each

realization. However, computational costs can become pro-
hibitive as numerous solutions are required due to the weak
convergence of MC sampling.

4 Spectral stochastic finite element method (SSFEM)

In this section, we describe solving the model problem using
the Spectral Stochastic Finite Element Method. SSFEM,
introduced by Ghanem and Spanos [11] and later extended
by [38] among others, is an approach for modeling systems
with random parameters within the FE framework. The semi-
discretized form of the model problem (1) is given by

K(ξ)u(ξ) − f (ξ) = 0, (9)

where K and f are the FE conduction matrix and load vector.
The element conduction matrix Ke and load vector f e are
assembled to formK andf . The vectoru represents the nodal
degrees of freedom of the FE approximation. The number of
degrees of freedom is denoted by N . The system of equations
in (9) is dependent on the input uncertainty defined by the
random vector ξ . Each component of the unknown vector u

is approximated in the stochastic space using a PC expansion
defined by

ui (ξ) =
M∑

j=1

Hj (ξ)ai
j , (10)

where Hj are polynomials selected from the Wiener–Askey
family [38], and ai

j are the expansion coefficients to be deter-
mined. The Wiener–Askey family is a collection of polyno-
mials which form an orthogonal basis of L2(�) with respect
to the probability density function of ξ .

In the numerical examples of this work, random vari-
ables with independent uniform distributions, U (−1, 1), are
considered. Multi-dimensional Legendre polynomials form
an orthogonal basis with respect to the uniform measure
Pξ (ξ) = ( 1

2 )d I[−1,1]d , where I[−1,1]d is the indicator set of
the hypercube [−1, 1]d with d random variables. In other
words,

〈Hi , Hj 〉 =
∫

[−1,1]d
Hi (ξ)Hj (ξ)Pξ (ξ)dξ = 〈H2

i 〉δi j , (11)

where δi j denotes the Kronecker delta, and 〈·〉 denotes the
mathematical expectation operator. The multi-dimensional
basis functions, H (ξ), are constructed from the product of
the one-dimensional Legendre polynomials [36]. The total
order of each polynomial product is less than or equal to
p ∈ N ∪ {0}, the order of the approximation.

The number of terms in the PC expansion, M , is deter-
mined by

M = (p + d)!
p!d! . (12)
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The polynomial expansion of u in (10) is introduced into
the FE system of (9), and the Galerkin projection of the resid-
ual in the space spanned by {Hi (ξ)}M

i=1 leads to the coupled
system of equations for the vector of coefficients a j , i.e.,

M∑
j=1

〈
K(·)Hj (·)Hk(·)

〉
a j

−〈f (·)Hk(·)〉 = 0 , k = 1, . . . , M. (13)

The (M · N ) × (M · N ) system of equations is rewritten in
compact form as

Ks â − fs = 0 , (14)

where the vector â collects all the expansion coefficients a j of
u(ξ). The matrix Ks and vector fs are assembled from each
spatial element integrated over the space of random variables.
Each ( j, k) block of the element matrix Ke

s is defined as

(Ke
s ) jk = 〈

Ke(·)Hj (·)Hk(·)
〉

, j, k = 1, . . . , M, (15)

and each kth sub-vector component of f e
s is defined as

(f e
s )k = 〈

f e(·)Hk(·)
〉

, k = 1, . . . , M. (16)

For the case ui (ξ) ∈ L2(�) smooth with respect to ξ , the
Wiener-Askey PC expansion converges in the mean-square
sense [38], and the convergence rate may be exponential if
ui (ξ) is analytic with respect to ξ [2]. However, for non-
smooth ui (ξ) with respect to ξ , the Wiener-Askey PC expan-
sion may converge slowly or even fail to converge due to
the Gibbs phenomenon. For the semi-discretized form of
the model problem (9), ui (ξ) is non-smooth due to, for
instance, the uncertainty in the inclusion geometry. Some
modified approaches which address the poor convergence
of SSFEM include multi-element generalized PC [33] and
multi-wavelets [17]. For this work, the SSFEM approxima-
tion is combined with the X-FEM spatial approximation,
which is described in the next section.

5 Extended stochastic finite element method (X-SFEM)

X-SFEM is a combined approach based on X-FEM and
SSFEM for solving stochastic partial differential equations
on random domains [22,24]. In X-SFEM, the non-smooth
solution at the material interface is captured with a suit-
able choice for the enrichment function, and the stochas-
tic response is approximated with SSFEM. The uncertain
interface location is defined by the random level set function
φ(x, ξ). The numerical solution is an explicit function of
the random variables, allowing fast post-processing to deter-
mine statistical moments and probability distributions for the
quantities of interest.

5.1 Approximation

Approximate solutions are sought for the weak form of the
stochastic model problem stated as: find u ∈ L2(�; V ) such
that〈∫

D
(k∇u)T ∇vdx

〉
=

〈∫
D

f vdx +
∫

�N

qsvds

〉

∀v ∈ L2(�; V0) , (17)

where L2(�; V ) is a Hilbert space of H1(D)-valued random
fields with finite second moments, and V is defined in (3).

In the X-SFEM approach, the enrichment function and
the degrees of freedom resulting from the spatial approxima-
tion (7) are functions of the random variables. The X-SFEM
approximation of u(x, ξ) is defined as

û(x, ξ) =
∑
i∈I

Ni (x)ui (ξ) +
∑
i∈I ∗

Ni (x)�(x, ξ)ai (ξ) , (18)

where a spectral approximation is made for the regular
degrees of freedom ui (ξ) and the enriched degrees of free-
dom ai (ξ) in the probability domain. The definition of the
enrichment function, �(x, ξ), incorporates the random level
set function (4). The uncertain location of the interface
is accounted for in the enrichment function, allowing the
approximation to capture solution irregularities in the spatial
and probability domains. Here, the set I contains all nodes
in the finite element mesh of D, and I ∗ ⊆ I contains the
enriched nodes which must consider the possible locations
of the random interface. The set I ∗ is dictated by the particu-
lar choice of enrichment function and is defined in Sect. 5.2
for each enrichment function explored in this work.

As in SSFEM, the spectral approximation for the regular
and enriched degrees of freedom is defined as

ui (ξ) =
M∑

j=1

ui
j Hj (ξ) and ai (ξ) =

M∑
j=1

ai
j Hj (ξ) , (19)

where ui
j and ai

j are the PC expansion coefficients and Hj (ξ)

are spectral polynomials defined in Sect. 4.
It will be shown in Sects. 6.1 and 6.2 that the regular

and enriched degrees of freedom may strongly oscillate with
respect to the random variables. In this case, a finite ele-
ment approximation in the probability domain may be better
suited than a spectral approximation. Consider a finite ele-
ment mesh, T S

hs
, of the probability domain �, where � here

is the hypercube [−1, 1]d . The linear FE approximation for
the regular and enriched degrees of freedom in (18) is defined
as

ui (ξ) =
∑
j∈J

ui
j N j (ξ) and ai (ξ) =

∑
j∈J∗

ai
j N j (ξ) , (20)

where N j are linear FE nodal basis functions. The set J con-
tains all nodes belonging to T S

hs
, and J ∗ ⊂ J contains the

123

24



www.manaraa.com

Comput Mech

enriched nodes. The enriched nodes are the nodes of the ele-
ments in T S

hs
which contain a value of ξ for which the spatial

element is intersected. The number of unknown coefficients
for the regular degrees of freedom, ui

j , is equal to the number

of nodes in T S
hs

. The number of unknown coefficients for the

enriched degrees of freedom, ai
j , depends on the choice of

enrichment function. We use a uniform mesh for � and piece-
wise integration over the probability domain. A drawback of
the linear FE approximation in the probability domain is that
more unknowns may be required than for a spectral approx-
imation when the degrees of freedom in (18) vary smoothly
with the random parameters.

5.2 Enrichment functions

We compare the performance of four enrichment functions
for X-SFEM. The first is the absolute value of the level set
function [31] extended to the stochastic framework, defined
as

�1(x, ξ) = |φ(x, ξ)| =
∣∣∣∣∣
∑
i∈I

Ni (x)φi (ξ)

∣∣∣∣∣ . (21)

The set I ∗ in (18) is defined as the set of nodes of all ele-
ments possibly intersected by the interface resulting from the
random variation of the inclusion geometry. The support of
�1(x, ξ) is the entire probability domain � for each spatial
element. The �1 enrichment is a straightforward approach,
but as shown in [20] convergence with spatial mesh refine-
ment is not optimal for a deterministic analysis. As discussed
in [8], the suboptimal convergence is due to problems in
blending elements. However, it is included in this work to
study and compare its performance in X-SFEM.

The second enrichment function is the deterministic
enrichment proposed by Moës et al. [20] extended to the
stochastic framework, defined as

�2(x, ξ) =
∑
i∈I

Ni (x) |φi (ξ)| − |φ(x, ξ)|. (22)

The set of enriched nodes I ∗ in (18) is defined as the set
of nodes of all elements possibly intersected by the inclu-
sion interface for the �2 enrichment (as in the absolute
value enrichment). For a deterministic analysis, optimal con-
vergence with mesh refinement is recovered using the �2

enrichment function [20]. The value of �2 is zero at all
nodes. Therefore the regular degrees of freedom coincide
with the solution value at the nodes according to (18). How-
ever, as it is shown later the regular and enriched degrees of
freedom are non-smooth in the probability domain, which
leads to poor convergence for a spectral PC approximation.
Also, elements with small areas of intersection may lead to
ill-conditioned systems. In a deterministic analysis, mesh
refinement in regions near the interface will mitigate the

ill-conditioning issue as well as improve the representation
of the inclusion geometry. In order to address this issue for
a stochastic analysis, mesh refinement is needed in regions
near all possible interface locations.

The third enrichment function is the absolute value enrich-
ment with the modification described in [8] and extended to
the stochastic framework, defined as

(�3(x, ξ))i = (|φ(x, ξ)| − |φi (ξ)|) R(x) , (23)

where

R(x) =
⎛
⎝∑

i∈I +
Ni (x)

⎞
⎠ . (24)

Here, I + is defined as the set of nodes belonging to the
intersected elements determined by the value of ξ . Therefore,
I + changes with ξ . The set of enriched nodes I ∗ in (18) is
defined as the set of nodes of all elements with at least one
node in the possible sets I +. We note that (�3(x, ξ))i is a
nodal enrichment, such that �(x, ξ) in (18) is replaced by
(�3(x, ξ))i . The �3 enrichment does not exhibit the numer-
ical issues of the �2 enrichment when elements have small
areas of intersection. The regular degrees of freedom coincide
with the solution value at the nodes for the �3 enrichment,
and the inaccuracy of the solution in blending elements (for
the �1 enrichment) are resolved by adding the ramp function,
R(x). The ramp function is one for intersected elements, zero
for standard elements, and varies continuously between zero
and one for a blending element.

The fourth enrichment function is one proposed by Nouy
et al. [22] and is defined as

�4(x, ξ) =

⎧⎪⎨
⎪⎩

∑
i∈I +

Ni (x)(β + φi (ξ)) if x ∈ D1(ξ)

∑
i∈I +

Ni (x)(β − φi (ξ)) if x ∈ D2(ξ) ,

(25)

where

β ≈ sup
i∈I ∗

|φi (ξ)| . (26)

Here I + is defined as the set of nodes of all elements possi-
bly intersected as a result of random variation of the inclusion
geometry. The value of the constant β is chosen to improve
the condition number of the system of equations. The set
of enriched nodes I ∗ in (18) and (26) includes the set I +
and the nodes of the blending elements for I +. The support
of �4(x, ξ) is the entire probability domain for each spatial
element possibly intersected and the blending elements. Ele-
ments with small intersected areas do not cause numerical
issues. Finally, the regular and enriched degrees of freedom
are smooth in the probability domain, for which a spectral
PC approximation is well suited.
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Fig. 4 (a) Random inclusion geometry and element node numbers for
visualizing the enrichment functions. Realization of the (b) �1, (c) �2,
(d) �4, and (e–f) �3 enrichment functions

A realization of the four enrichment functions for a bar
with a vertical interface is shown in Fig. 4. The location
of the interface is x� = r(ξ), where r = 5 + 2.5ξ and
ξ has a uniform distribution U (−1, 1). The bar is shown
with L = 10 and a mesh size of h = 1. The inclusion
geometry for r = 4.5 is shaded, and the dashed lines repre-
sent the variation of the interface location with respect to ξ .
The enrichment functions are shown for the interface loca-
tion at r = 4.5. The �1 enrichment is zero on the inter-
face and non-zero everywhere else in the domain. The �2

enrichment is nonzero only for an intersected element. The
�3 enrichment is nonzero for an intersected element plus
its blending element, and is defined for each node. The �4

enrichment is defined over the elements which are possi-
bly intersected plus the blending elements. The �3 enrich-
ment at node i is denoted by (�3)i . The node numbers for
the four node quadrilateral element is shown in Fig. 4a.
In this example, there is no variation in the y-direction of
the enrichment functions. Therefore (�3)1 = (�3)3 and
(�3)2 = (�3)4. The �3 enrichment is shown for nodes 1
and 2.

Remark 1 More detailed interpretations of applying the dif-
ferent enrichment functions in X-SFEM, as well as using the
spectral PC and linear FE approximation in the probability
domain, have been deferred to the numerical examples in
Sect. 6.

Fig. 5 Spatial element with a vertical interface determined by one ran-
dom parameter

5.3 Numerical integration

To compute the matrix Ks and vector fs in (14), the ele-
ment quantities Ke

s and f e
s in (15) and (16) are computed

by integrating over the spatial and probability domains. The
integration is performed for each spatial element, and the
element quantities are assembled to construct the system of
equations. For the spectral PC approximation of the degrees
of freedom (19), the integration is performed over the entire
probability domain. For the finite element approximation of
the degrees of freedom (20), the integration is performed over
each element in T S

hs
and assembled to compute Ke

s and f e
s .

The dependence of Ke(ξ) and f e(ξ) on ξ is piecewise
smooth. As described for X-FEM, a partition of the spatial
domain for an intersected element is required for accurate
integration. In addition, careful numerical integration over
the probability domain is also required in X-SFEM. Due to
the piecewise behavior, a partition of the probability domain
is created in order to accurately integrate Ke(ξ) and f e(ξ).
The partition is only used to subdivide the probability domain
for specifying integration points and does not produce any
additional degrees of freedom. The appropriate quadrature
points are specified per subdivision in order to accurately
compute the integral.

To illustrate the dependence of Ke(ξ) on ξ , consider the
spatial element in Fig. 5. The location of the vertical interface,
r(ξ), depends on one random parameter and possibly extends
beyond the boundaries of the element. The interface defines
the boundary between different material conductivities. The
matrix Ke(ξ) is defined as

Ke(ξ) =
∫
De

B(x)T k(x, ξ)B(x)dx. (27)

Here we consider the matrix entries, K e
i j (ξ), with (i, j)

= 1, . . . , 4, corresponding to the regular degrees of free-
dom. Therefore B(x) in (27) consists of the derivatives of
Ni (x). Assume the element is intersected for ξa < ξ < ξb,
hence r(ξa) and r(ξb) correspond to interface locations at
the left and right element edges, respectively. The K e

i j (ξ) are
shown in Fig. 6 as functions of ξ , where i = j and i 
= j
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Fig. 6 The Ke(ξ) entries as a function of ξ

represent the diagonal and off-diagonal entries, respectively.
The K e

i j (ξ) are constant when the element is not intersected
and vary between the constant states when intersected. For
this illustration, the three subdivisions ξ < ξa , ξa < ξ < ξb,
and ξ > ξb align with the regions where Ke(ξ) is smooth.

The nodal level set functions of each spatial element,
φi (ξ), can be used to determine an appropriate partition
of the probability domain. The partition should align with
φi (ξ) = 0, which indicates where the interface intersects a
node. The approach suggested in [24] uses a Cartesian mesh
to partition the probability domain for a spectral PC approxi-
mation of the degrees of freedom. Recursive splitting is used
to locally refine regions where φi (ξ) = 0. The level of refine-
ment is specified to control the number of partitions and the
accuracy of the alignment with φi (ξ) = 0. In this work,
we use the union of φi (ξ) = 0 for each node of De and a
Delaunay triangulation to minimize the number of required
partitions for d ≥ 2. For the case d = 1, φi (ξ) = 0 corre-
spond to points in the probability domain which define the
partition. If the random level set function is constructed using
a Karhunen–Loève expansion (as in the case of using mater-
ial images [29]), then φi (ξ) may be linear with respect to ξ .
In this case, a triangulated partition will align with φi (ξ) = 0
with a low number of subdivisions. For the case when φi (ξ)

is not linear with respect to ξ , creating a triangulated partition
is more complex than constructing the Cartesian mesh with
recursive splitting.

For the example shown in Fig. 5 with d = 1, there are two
locations where the interface intersects a node (which in this
case correspond to intersecting an edge). These two locations,
ξa and ξb, define the three subdivisions of the probability
domain.

As an example of the triangulated partition for two random
variables, consider the spatial element in Fig. 7. The slanted
interface location is determined by two random variables, ξ1

and ξ2. If ξ1 and ξ2 have uniform distributions U (−1, 1),
r1(ξ1) = 2ξ1, r2(ξ2) = 2ξ2, and the element domain is
De = (−1, 1) × (−1, 1) ⊂ R

2, then four lines in the
probability domain define φi (ξ) = 0, as illustrated. The
union of these lines create nine regions of the probability
domain. As the four lines represent the zero value of φi (ξ),
each of the nine regions have unique combinations of posi-
tive and negative φi (ξ). The subdivisions for piecewise inte-
gration are created by a Delaunay triangulation of the nine
regions.

6 Numerical examples

The performance of the four enrichment strategies and sto-
chastic approximation techniques will be examined in this
section. The examples considered are steady state heat con-
duction problems with no internal heat generation ( f = 0 in
(1)) in a two-dimensional domain with a material inclusion.
The probabilistic description of the material interface loca-
tion is assumed to be known for each example and is defined
by the random parameters ξ . Consistent units are assumed
for the parameters used in the examples.

6.1 Example 1

The first numerical example is the heat conduction problem
shown in Fig. 8. The example consists of a bar of length
L = 20 with a center inclusion. The material interface is
determined by the length of the inclusion, described by one
random variable. The length of the inclusion is 2r , where
r = 5 + 2.5ξ and ξ has a uniform distribution U (−1, 1).
In Fig. 8, the dashed lines represent the variation of each
interface location, and the inclusion geometry for r = 5.5

Fig. 7 (a) Spatial element with
a slanted interface defined by
two random variables. (b)
Regions of the probability
domain defined by φi (ξ) = 0.
(c) The probability domain is
triangulated for numerical
integration

(a) (b) (c)
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Fig. 8 Problem description for Example 1

Fig. 9 Analytical solution for Example 1

is shaded. Material 1 has conductivity k1 = 2 in D1 and
material 2 (inclusion) has conductivity k2 = 20 in D2. The
temperature is fixed at u = 0 on the left edge and u = 100
on the right edge. The top and bottom edges are adiabatic.
The spatial mesh consists of square elements of size h = 1.
We note that the spatial approximation is converged for this
mesh size.

Since the material interfaces are vertical and the top and
bottom edges are adiabatic, the solution is one-dimensional
in the spatial domain. This example was chosen because an
analytical solution exists for any realizations of ξ, and details
of the numerical approach can be easily visualized. The ana-
lytical solution is shown as a function of x = (x, 0) and ξ

in Fig. 9. The analytical solution is piecewise smooth in the
spatial and probability domains.

Before assessing the performance of X-SFEM with the
different enrichment functions, it is instructive to exam-
ine the behavior of the solution and the spatial degrees of
freedom in the probability domain. Deterministic X-FEM
solutions are computed for a number of realizations of

the inclusion geometry starting with ξ = −1 (r = 2.5)

and ending with ξ = 1 (r = 7.5) with a step size of
�ξ = 0.05. The values of the degrees of freedom and
solution for the node at x = (5, 0) are shown in Fig. 10.
Each line in the graph corresponds to a different enrich-
ment function. Each symbol on a line represents an X-FEM
solution for a particular inclusion geometry. Note that the
inclusion interface passes through the node at x = (5, 0)

when ξ = 0. The regular and enriched degrees of free-
dom are non-smooth with respect to ξ for the �1, �2,
and �3 enrichments. Both the regular and enriched degrees
of freedom are smooth for the �4 enrichment. A spec-
tral PC approximation will accurately capture the smooth
behavior of the degrees of freedom for the �4 enrich-
ment. However, a finite element approximation will be better
suited to capture the non-smooth behavior of the degrees
of freedom for the other enrichment functions. The reg-
ular degrees of freedom for the �2 and �3 enrichments
correspond to the solution value at the node because the
value of the enrichment function is zero at the node. The
solution is accurately captured using the �2, �3, and �4

enrichments. The solution is not accurately captured by
the �1 enrichment, confirming X-FEM results discussed
in [8].

As discussed in Sect. 5.3, a partition is needed to accu-
rately integrate over the probability domain to compute Ke

s .
The behavior of the Ke matrix as a function of ξ is examined
for each enrichment function. The entries ofKe for element A
(see Fig. 8) corresponding to the regular and enriched degrees
of freedom as a function of the random variable are shown
in Fig. 11, where i = j and i 
= j represent the diagonal and
off-diagonal entries, respectively, and (i, j) = 1, . . . , 4. The
behavior of K e

i j as a function of ξ is piecewise smooth. A par-
tition of the probability domain which aligns with the regions
where Ke is piecewise smooth allows efficient and accurate
integration in (15). The Ke matrix entries corresponding to
the regular degrees of freedom do not change with the choice
of enrichment function. The Ke matrix entries correspond-
ing to the coupled regular and enriched degrees of freedom
are not shown, but they show a similar dependency on the

(a) (b) (c)

Fig. 10 The (a) regular DOF values, (b) enriched DOF values, and (c) solution at x = (5, 0) as a function of ξ for the different enrichment
strategies for Example 1
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Fig. 11 Dependency of Ke on
the random variable for element
A in Fig. 8 corresponding to the
(a) regular degrees of freedom
and the enriched degrees of
freedom using the (b) �1, (c)
�2, (d) �3, and (e) �4
enrichment strategies

(a)

(b) (c)

(d) (e)

random variable and thus the same partition is necessary for
an accurate numerical quadrature.

For this example, the variation of Ke with respect to the
random variable shown in Fig. 11 establishes the importance
of partitioning the probability domain for integration. If the
integration points are specified without a proper partition,
sharp gradients or local behavior in the Ke matrix entries
may not be captured. The system of equations may become
singular if the interval of local behavior does not include any
integration points. A proper partition allows a minimum num-
ber of quadrature points to be used for an accurate numerical
integration.

The performance of X-SFEM can be assessed by examin-
ing the behavior of the error of X-SFEM solutions obtained
with the different enrichment functions and the spectral PC
and linear FE approximations in the probability domain.

Denoting an X-SFEM solution by û and the analytical solu-
tion by u, the relative error in the X-SFEM solution is given
by

e = ‖u − û‖L2(�;L2(D))

‖u‖L2(�;L2(D))

. (28)

The convergence of the error in the X-SFEM solutions
with respect to the order of the spectral PC approximation
(p) is shown in Fig. 12 and with respect to the mesh size
of the linear FE stochastic approximation (hs) in Fig. 13.
Each line in the figure corresponds to a different enrichment
function. The approximate convergence rates are noted on
the figures for the �2, �3, and �4 enrichment functions. The
convergence rate for the �1 enrichment function is approxi-
mately zero and is not shown. The poor convergence for the
�1 enrichment was expected from the behavior of the degrees
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Fig. 12 Convergence of the relative error in L2(�; L2(D)) using a
spectral PC stochastic approximation for Example 1

of freedom and the solution accuracy shown in Fig. 10. The
convergence rates for the �2 and �3 enrichments improve
using a linear FE stochastic approximation as compared to
using the spectral PC approximation. The �4 enrichment
has the highest convergence rate for both of the stochas-
tic approximation techniques. For this example, a uniform
stochastic mesh size of hs = 0.2/n, for any positive inte-
ger n, aligns the stochastic elements with the variation of
the degrees of freedom for enrichments �2 and �3. The
misaligned stochastic mesh sizes chosen in Fig. 13a were
hs ∈ {1, 0.5, 0.25, 0.125, 0.0625}, and the aligned stochas-
tic mesh sizes chosen in Fig. 13b were hs ∈ {0.2, 0.1, 0.05}.
The stochastic mesh size does not affect the convergence rate
using the �1 and �4 enrichments. For an aligned stochastic
mesh, the error using the �2 and �3 enrichments is simi-
lar to the �4 enrichment. Finally, the same level of error is
achieved with the �4 enrichment for the spectral PC approx-
imation using fewer degrees of freedom per node than the
linear finite element approximation. The spectral PC approx-
imation with p = 5 uses 12 degrees of freedom per enriched
node while the linear FE approximation with hs = 0.05 uses
82 degrees of freedom per enriched node. Note that the total
number of degrees of freedom depends on the number of
enriched nodes for each enrichment type. Therefore there is

a difference whether or not the enriched nodes of the blending
elements are included.

Example 1 provides a first insight into the characteris-
tics of a successful enrichment function for X-SFEM with
a spectral PC stochastic approximation. In order to achieve
global smoothness of the degrees of freedom in the prob-
ability domain, �(x, ξ) should not be zero at all nodes. As
seen with the �2 and �3 enrichments, if the enrichment func-
tion is zero at the nodes, the regular degrees of freedom will
only be piecewise smooth. A finite element approximation in
the probability domain can be used to capture the piecewise
smooth behavior, but there may be a strong dependency of the
accuracy of the approximation on the stochastic mesh. Also,
for global smoothness the support of �(x, ξ) should include
all possibly intersected elements plus blending elements for
a given value of ξ . The blending elements are included to sat-
isfy the partition of unity as discussed in [8], and the enrich-
ment function should ramp to zero on the blending elements.
The spectral PC approximation in the probability domain is as
accurate and more efficient than a finite element approxima-
tion if the degrees of freedom are globally smooth. We note
that these observations apply to C0 continuous enrichment
functions and may not apply to other types of enrichment.

6.2 Example 2

The second numerical example is the heat conduction prob-
lem shown in Fig. 14. The square domain D = (−10, 10)

× (−10, 10) ⊂ R
2 has a centered circular inclusion. The

radius of the inclusion is determined by one random vari-
able, r = 5 + 2ξ , in which ξ has a uniform distribution
U (−1, 1). In Fig. 14, the dashed lines represent the variation
of the inclusion radius, and the inclusion material is shaded
for r = 4.75. Material 1 has a conductivity k1 = 2 in D1, and
material 2 a conductivity k2 = 20 in D2. The temperature is
fixed at u = 0 on the left edge and u = 100 on the right edge.
Adiabatic boundary conditions are enforced on the top and
bottom edges. The purpose of this numerical example is to
examine the effect of spatial mesh refinement on the smooth-

Fig. 13 Convergence of the
relative error in L2(�; L2(D))

for a linear FE stochastic
approximation for Example 1
using a (a) misaligned stochastic
mesh and an (b) aligned
stochastic mesh for �2 and �3

(a) (b)
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Fig. 14 Problem description for Example 2

ness of the degrees of freedom for the different enrichment
functions.

In order to study the impact of spatial mesh refinement on
the smoothness of the degrees of freedom as a function of
ξ , the X-FEM solution was computed for multiple realiza-
tions of the inclusion geometry. A step size of �ξ = 0.001
was used, and a deterministic X-FEM solution was com-
puted for each of the realizations with four spatial mesh sizes
h. Note that spatial mesh refinement improves simultane-
ously the resolution of the solution field and the resolution
of the inclusion geometry since the level set function is dis-
cretized according to the finite element mesh (4). The values
of the regular and enriched degrees of freedom for the node
at x = (5, 0) are shown for each enrichment function in
Figs. 15, 16, 17 and 18 for different values of h. As more
nodes are added by mesh refinement, some of the degrees
of freedom show additional local minimum and maximum
values. Here we consider the smoothness of the degrees of
freedom to improve with spatial mesh refinement when the
magnitudes of the local minimum and maximum values are
reduced. The smoothness of both the regular and enriched
degrees of freedom using the �1, �2, and �3 enrichments
does not improve with spatial mesh refinement. Even for
the �4 enrichment, the DOF values are not globally smooth
functions of the random variable. However, spatial mesh
refinement improves the smoothness of both the regular and
enriched DOF values using the �4 enrichment.

For the �2 enrichment, elements with small areas of inter-
section led to an ill-conditioning of the system of equations
resulting in solution inaccuracies. The �2 enrichment is local
to an intersected element, and the magnitude of the enrich-
ment approaches zero for small intersections. Therefore the
contribution to the K matrix for the enriched degrees of
freedom associated with the small intersected area will be
almost zero. The ill-conditioning does not occur for the other
enrichment strategies because the �1 and �4 enrichments
are defined over all possibly intersected elements, and the
�3 enrichment is defined over the intersected element plus
the blending elements. Spatial mesh refinement reduces the

numerical inaccuracy for the �2 enrichment because the ele-
ment areas formed by the intersection become more equal.
The inaccuracies in the solution can be seen in Fig. 16a, as
the regular DOF values are also the solution since �2 = 0
at a node. In Fig. 16b, the enriched DOF values are nonzero
only when an element containing the node at x = (5, 0) is
intersected. The enriched DOF values exhibit jumps when
the interface approaches a node. Note the vertical scale in
Fig. 16b has been adjusted for the comparison using the dif-
ferent spatial mesh sizes, such that the minimum values are
not shown. The jumps occur whenever the intersected area
of an element is small. The ill-conditioning is handled in
the deterministic case by refining the spatial mesh near the
interface. When working problems for uncertain geometry,
local mesh refinement would be needed for all regions where
the intersection may occur. The �2 enrichment is not well
suited for problems with uncertain geometry and will not be
considered in the remainder of this paper.

In order to study the impact of the smoothness of the
degrees of freedom on the approximate solution, the relative
error in the energy norm of the X-SFEM solution from the
spectral PC and linear FE stochastic approximation is com-
pared. The energy norm of the stochastic solution is defined
as

‖u‖2
E =

〈∫
D

(κ∇u)T ∇u dx

〉
= uT Ksu . (29)

Since an analytical solution is not available for this exam-
ple, a reference value is computed as the mean of the energy
norm of multiple X-FEM solutions using a MC simulation.
The X-FEM solution using the �1, �3, and �4 enrichment
functions converges as the spatial mesh is refined, but the
convergence rate varies because the approximation spaces
are different. Therefore a reference value for each enrichment
function is computed using a spatial mesh size of h = 0.25
and a converged MC simulation with 150,000 samples. A
measure for the accuracy of the X-SFEM approximation
using the energy norm is computed as

εE = ‖û‖E

‖ure f ‖E
, (30)

where ‖ure f ‖E is the MC based reference energy norm. The
reference energy norm values for the �1, �3, and �4 enrich-
ment strategies are 168.605, 168.490, and 168.505, respec-
tively. The 95 % confidence intervals for the mean values for
each enrichment function are ± 0.0672. The reference val-
ues are not identical for the different enrichment strategies
because the spatial mesh is not converged. The spatial mesh
size used for the reference value was limited by the available
computational resources. Therefore εE as defined in (30) is
not a true indicator of the error. However it provides a com-
parative measure for the accuracy of the X-SFEM solution
using the different enrichment functions. Note that a value
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Fig. 15 (a) Regular and
(b) enriched degrees of
freedom for the node at
x = (x, y) = (5, 0) with respect
to ξ using the �1 enrichment
from X-FEM for Example 2.
Here h denotes the length of
elements along the x and y
directions
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Fig. 16 (a) Regular and
(b) enriched degrees of
freedom for the node at
x = (x, y) = (5, 0) with respect
to ξ using the �2 enrichment
from X-FEM for Example 2.
Here h denotes the length of
elements along the x and y
directions
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Fig. 17 (a) Regular and
(b) enriched degrees of
freedom for the node at
x = (x, y) = (5, 0) with respect
to ξ using the �3 enrichment
from X-FEM for Example 2.
Here h denotes the length of
elements along the x and y
directions
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Fig. 18 (a) Regular and
(b) enriched degrees of
freedom for the node at
x = (x, y) = (5, 0) with respect
to ξ using the �4 enrichment
from X-FEM for Example 2.
Here h denotes the length of
elements along the x and y
directions
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Fig. 19 Measure εE of the
X-SFEM solution accuracy with
a spectral PC approximation in
the probability domain for
increasing PC expansion p with
(a) h = 0.5 and (b) h = 0.25 for
Example 2

(a) (b)

Fig. 20 Measure of the
X-SFEM solution accuracy with
a linear FE approximation in the
probability domain for
decreasing hs with (a) h = 0.5
and (b) h = 0.25 for Example 2

(a) (b)

of εE = 1 indicates that the energy norm of the X-SFEM
approximation equals the MC based reference energy norm.

The measure, εE , is shown in Fig. 19 for increasing
orders of the spectral approximation and spatial mesh sizes
of h = 0.5 and h = 0.25. For the �1 and �4 enrichments,
the measure is converged at low orders of the spectral PC
approximation with a smaller converged value for the �4

enrichment. The measure using the �3 enrichment converges
slower since the regular degrees of freedom are only piece-
wise smooth for all spatial mesh sizes. Also, the measure
for the �3 enrichment increases as the spatial mesh size is
decreased. The spectral approximation becomes less accu-
rate as the spatial mesh is refined because the variation of
the enriched degrees of freedom becomes more localized, as
shown in Fig. 17b. We note that an adaptive multi-element
generalized PC approximation may improve the performance
of the �3 enrichment [33].

The measure, εE , is shown in Fig. 20 for the linear FE
approximation with decreasing stochastic mesh sizes for spa-
tial mesh sizes of h = 0.5 and h = 0.25. The values of
εE using the �1 and �4 enrichments show a similar behav-
ior as with the spectral PC approximation. The values of
εE using the �3 enrichment is improved using the linear
FE approximation in the probability domain, and the con-
verged measure has the same value as the �4 enrichment.
An approach to improve the performance of the linear FE

Fig. 21 Problem description for Example 3, shown with a spatial mesh
size of h = 1

approximation with the �3 enrichment is to use an aligned
mesh for the probability domain, as discussed in Sect. 6.1.
The partition constructed for piecewise integration over the
probability domain can be used to define an aligned mesh
for the probability domain, however this approach was not
studied in this work.

6.3 Example 3

The third numerical example is the heat conduction problem
shown in Fig. 21. This example is similar to Example 2,
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Table 1 Energy norm of the X-SFEM solution and MC based reference energy norm for Example 3

�1 �3 �4

h = 1 h = 0.5 h = 0.25 h = 1 h = 0.5 h = 0.25 h = 1 h = 0.5 h = 0.25

p 1 158.157 157.922 157.811 158.435 159.033 159.470 158.050 157.853 157.785

2 158.019 157.787 157.659 157.875 158.310 158.670 157.891 157.652 157.587

3 157.980 157.761 157.637 157.700 157.987 158.319 157.850 157.617 157.559

4 157.962 157.750 157.630 157.590 157.811 158.095 157.834 157.602 157.549

5 157.950 157.744 157.627 157.560 157.711 157.949 157.824 157.595 157.545

hs 2 158.100 157.869 157.746 158.248 158.780 159.195 157.987 157.789 157.713

1 157.994 157.774 157.651 157.755 158.078 158.416 157.863 157.641 157.586

0.5 157.944 157.741 157.627 157.553 157.677 157.885 157.820 157.596 157.548

0.25 157.927 157.726 157.618 157.507 157.545 157.618 157.806 157.583 157.540

re f 157.611 157.526 157.537

(a) (b) (c)

Fig. 22 Measure of the X-SFEM solution accuracy using the spectral PC stochastic approximation for the (a) �1, (b) �3, and (c) �4 enrichments
for Example 3

except that the inclusion geometry depends on two random
variables. The square domain D = (−10, 10) × (−10, 10)

⊂ R
2 has an inclusion with radius

r(θ, ξ) = r̄ + σ

2∑
k=1

1

k
ξk

[
cos(k2θ) + sin(k2θ)

]
, (31)

where r̄ and σ are constants. Both ξ1 and ξ2 have uniform
distributions U (−1, 1) and are statistically independent. The
angle θ is measured counterclockwise from the positive
x-axis, and the constants r̄ = 4 and σ = 1 are used. The
dashed lines in Fig. 21 define the maximum and minimum
extent of the interface geometry, such that any realization
of the material interface lies within the region between the
dashed lines. The inclusion material is shaded for one sam-
ple of the possible geometry, ξ = (0.45, 0.80). The purpose
of Example 3 is to investigate the convergence of the solu-
tion using the different enrichment functions and compare
the spectral PC and linear FE stochastic approximations for
the case of a two-dimensional probability domain.

As in Sect. 6.2, a measure for the accuracy of the
X-SFEM approximation using the energy norm (30) is used

to investigate the convergence. The X-FEM reference solu-
tion for each enrichment function is computed using a MC
simulation with 50,000 samples and a spatial mesh size of
h = 0.25. The 95 % confidence intervals for the mean val-
ues of the reference solution for each enrichment function
are ± 0.0040. The MC based reference energy norm and the
X-SFEM solution energy norms for spatial mesh and sto-
chastic refinement are shown in Table 1. Stochastic refine-
ment for the spectral PC approximation refers to increasing
the order of the approximation, p. For the linear FE approx-
imation, stochastic refinement refers to decreasing the mesh
size, hs , in the probability domain. The measures, εE , are
shown in Figs. 22 and 23 for the different enrichment func-
tions with spatial mesh refinement and stochastic refinement.
The dashed line represents a value of eE = 1, which indi-
cates when the energy norm of the X-SFEM approximation
equals the MC based reference energy norm. The �1 and �4

enrichments show similar performance for the spectral PC
and linear FE approximations. However, recall from Sect.
6.1 that the �1 enrichment is not an accurate determinis-
tic approximation. The �4 enrichment with the spectral PC
approximation at p = 5 approaches a similar measure as the
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(a) (b) (c)

Fig. 23 Measure of the X-SFEM solution accuracy using the linear FE stochastic approximation for the (a) �1, (b) �3, and (c) �4 enrichments
for Example 3

linear FE approximation at hs = 0.25, but significantly fewer
degrees of freedom are used. The spectral PC approximation
with p = 5 uses 42 degrees of freedom per enriched node
while the linear FE approximation with hs = 0.25 uses 162
degrees of freedom per enriched node.

For the �3 enrichment, as the spatial mesh is refined the
approximation in the probability domain must be simulta-
neously refined in order to maintain or reduce the measure
εE . As can be seen in Figs. 22b and 23b, if only the spatial
mesh is refined the measure increases. This effect is more pro-
nounced for the spectral PC approximation than the linear FE
approximation in the probability domain because the varia-
tion of the enriched degrees of freedom becomes more local-
ized as the spatial mesh is refined. The convergence behavior
with the �3 enrichment is opposite to what is observed for
the other enrichment functions.

In contrast to the other enrichment strategies, it is interest-
ing that the X-SFEM solution with the �3 enrichment con-
verges to the correct solution using the coarsest spatial mesh
with stochastic refinement. This suggests that the determin-
istic solution with the �3 enrichment converges faster as the
spatial mesh is refined. In the present example, this char-
acteristic allows a coarse spatial discretization to be used to
achieve a level of accuracy, while the other enrichment strate-
gies require a finer spatial discretization to achieve the same
accuracy. However, for other problems this advantage of the
�3 enrichment might be offset for its use in X-SFEM by the
need for a fine resolution in the probability domain.

To summarize the behavior of the different enrichment
strategies for the present example, the accuracy of the
X-SFEM solution with the �1 and �4 enrichments is limited
by the spatial resolution. In other words, the X-SFEM solu-
tion with these enrichments converges quickly with refine-
ment of the stochastic approximation but requires a rather
fine spatial mesh. In contrast, the accuracy of the X-SFEM
solution with the �3 enrichment is limited by the resolution
in the probability domain and converges quickly as the spatial
mesh is refined. The main drawback of the �3 enrichment
is the need to simultaneously increase the resolutions of the

spatial and stochastic approximations to maintain a particular
level of accuracy.

7 Conclusions

The solution of partial differential equations with uncer-
tainty in geometry was considered, and the Extended Sto-
chastic Finite Element Method (X-SFEM) was studied for
two-dimensional heat conduction of materials with uncer-
tain inclusion geometry. A random field which characterizes
the uncertain geometry is needed in X-SFEM, and the numer-
ical solution can be used to predict statistical moments and
probability distributions for the quantities of interest. The
advantages of the X-SFEM approach include the avoidance
of remeshing for realizations of the interface geometry and
the ability to deal with complex inclusion geometries. For
accurate integration in the probability domain, a partition
approach was introduced using a triangulation which aligns
with the regions where the integrand quantities are piecewise
regular based on the random nodal level set values.

Four possible enrichment functions for X-SFEM were
studied and compared. Two of the enrichment functions have
global spatial support while the other two enrichments have
local spatial support for a realization of the random parame-
ters. For the two enrichments with local spatial support, one
included the blending elements and the other did not. For the
two enrichments with global spatial support, one simply used
the absolute value of the level set function while the other was
introduced in [22]. Here we considered a spectral polynomial
chaos (PC) and a linear finite element (FE) approach for the
approximation in the probability domain. Ideally for a spec-
tral PC approximation in the probability domain, the degrees
of freedom should be globally smooth. The smoothness of
the degrees of freedom as functions of the random parame-
ters depend on the chosen enrichment function and the spatial
mesh size. The linear FE approximation was considered as
an alternative since the degrees of freedom may be piecewise
smooth functions of the random parameters. For the linear
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FE approximation, there may be a strong dependency of the
stochastic mesh on the accuracy of the approximation. For
globally smooth functions, the spectral PC approximation
is more efficient since fewer coefficients are needed. Of the
four enrichment functions studied, only the enrichment intro-
duced in [22] showed that in general the smoothness of the
regular and enriched degrees of freedom as a function of the
random parameters improves with spatial mesh refinement.
The X-SFEM solution with the enrichment from [22], which
has global spatial support, converges quickly with stochas-
tic refinement but may require a fine spatial mesh to achieve
global smoothness of the degrees of freedom in the prob-
ability domain. The X-SFEM solution with the enrichment
which has local spatial support and includes the blending
elements converges with a coarse spatial mesh but its accu-
racy is limited by the resolution in the probability domain.
The drawback of using the enrichment with local spatial sup-
port is that simultaneous refinement of the spatial and sto-
chastic approximations is needed to increase the accuracy.
For the diffusive model problem presented in this paper, the
X-SFEM solution using the spectral PC approximation in the
probability domain with the enrichment function introduced
in [22] showed the best performance in terms of accuracy
and convergence properties. However, for other classes of
problems, this conclusion has to be confirmed.

The numerical studies suggest that for diffusive problems,
the spectral PC approximation is as accurate and more effi-
cient than the linear FE approximation in the probability
domain for an appropriate choice of enrichment function.
For a successful enrichment function, the support of �(x, ξ)

should include all possibly intersected elements plus the
blending elements for a given value of ξ . In order to achieve
global smoothness of the degrees of freedom as functions of
the random parameters, the spatial support of �(x, ξ) should
be global and should not introduce local oscillations which
increase with spatial mesh refinement.
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Abstract The extended finite element method (XFEM) is
an approach for solving problems with non-smooth solutions,
which arise from geometric features such as cracks, holes,
and material inclusions. In the XFEM, the approximate solu-
tion is locally enriched to capture the discontinuities with-
out requiring a mesh which conforms to the geometric fea-
tures. One drawback of the XFEM is that an ill-conditioned
system of equations results when the ratio of volumes on
either side of the interface in an element is small. Such inter-
face configurations are often unavoidable, in particular for
moving interface problems on fixed meshes. In general, the
ill-conditioning reduces the performance of iterative linear
solvers and impedes the convergence of solvers for nonlin-
ear problems. This paper studies the XFEM with a Heaviside
enrichment strategy for solving problems with stationary and
moving material interfaces. A generalized formulation of the
XFEM is combined with the level set method to implicitly
define the embedded interface geometry. In order to avoid
the ill-conditioning, a simple and efficient scheme based on
a geometric preconditioner and constraining degrees of free-
dom to zero for small intersections is proposed. The geomet-
ric preconditioner is computed from the nodal basis func-
tions, and therefore may be constructed prior to building
the system of equations. This feature and the low-cost of
constructing the preconditioning matrix makes it well suited
for nonlinear problems with fixed and moving interfaces.
It is shown by numerical examples that the proposed pre-

C. Lang
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Research Center, Hampton, VA, USA

D. Makhija · A. Doostan (B) · K. Maute
Aerospace Engineering Sciences, University of Colorado,
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e-mail: doostan@colorado.edu

conditioning scheme performs well for discontinuous prob-
lems and C0-continuous problems with both the stabilized
Lagrange and Nitsche methods for enforcing the continu-
ity constraint at the interface. Numerical examples are pre-
sented which compare the condition number and solution
error with and without the proposed preconditioning scheme.
The results suggest that the proposed preconditioning scheme
leads to condition numbers similar to that of a body-fitted
mesh using the traditional finite element method without loss
of solution accuracy.

Keywords Level set method · Extended finite element
method · Heaviside enrichment · Ill-condition ·
Preconditioner

1 Introduction

A standard tool for numerically solving problems defined by
a set of partial differential equations in many engineering dis-
ciplines is the finite element method (FEM). The solution to
problems which feature embedded interfaces, such as mate-
rial inclusions or voids, is non-smooth due to strong or weak
discontinuities which occur at the interface. A strong discon-
tinuity occurs when the solution is discontinuous across the
interface. A weak discontinuity occurs when the solution is
continuous but its spatial derivatives are discontinuous across
the interface. Conventionally, a finite element mesh is used
which conforms to the interface in order to approximate the
non-smooth solution. However, mesh generation may lead
to robustness issues and increase the computational cost for
problems with complex geometries or moving interfaces.

A widely used alternative for solving problems with
embedded interfaces is the extended finite element method
(XFEM) [21,32]. Local enrichment functions are added to
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(a) (b)

Fig. 1 Configuration of four quadrilateral elements which lead to a a
well-conditioned and b ill-conditioned system. The lower left element
in b has a small ratio of areas bisected by the interface

the standard FEM basis to represent the strong or weak
solution discontinuities. The enrichment functions are con-
structed based on the position of the interface, which is
implicitly defined by the level set method [23,28]. The
XFEM does not require a mesh that conforms to the interface,
which reduces the complexity of mesh construction. This fea-
ture is particularly advantageous for complex geometries as
well as problems with moving or changing interface con-
figurations [5,15,16,38]. However, the XFEM can lead to
ill-conditioned systems when an intersected element(s) has
a small ratio of areas bisected by the interface, as illustrated
in Fig. 1. Ill-conditioned systems are a particular issue for
nonlinear problems and iterative linear solvers [2,10].

The focus of this work is on a new scheme to mitigate the
ill-conditioning issue in the XFEM. The goal is to obtain con-
dition numbers using the XFEM that are of the same order of
magnitude as standard FEM with a conforming mesh. Var-
ious approaches for dealing with this ill-conditioning have
been proposed. A straight-forward approach is to construct
a mesh that avoids small intersections with a uniform ratio
of intersected element areas. Another approach is to move
the nodes of intersected elements in order to avoid any inter-
sected areas less than a specified amount [6]. However these
approaches require adaptive meshing and mesh updating
strategies which typically encounter efficiency and robust-
ness issues for complex geometries and moving interfaces.

Other approaches involve modifications to the discretized
system of equations such that careful mesh construction or
moving the nodes is not necessary. Reusken [24] suggested
constraining degrees of freedom associated with small sup-
ports to zero. This approach improves the condition num-
ber of the system by removing the constrained degrees of
freedom. However, there is a trade-off between the accuracy
of the solution and the ill-conditioning of the system which
depends on the criterion for selecting the degrees of freedom
to be constrained. The criterion must be carefully chosen in
order to improve the condition number without decreasing
the solution accuracy beyond an acceptable level. Precondi-
tioning schemes have been proposed to improve the condition
number of the system matrices to be solved. Sauerland and

Fries [27] study a Jacobi preconditioner, and precondition-
ers based on a Cholesky decomposition are introduced by
Béchet et al. [2] and Menk and Bordas [20]. These alterna-
tive schemes are well suited for linear problems. However,
the preconditioner can be built only after the discretized sys-
tem of equations is assembled and must be reconstructed in
each solution step for nonlinear problems, even when the
interface geometry remains fixed.

A third class of methods modify the enrichment function to
avoid the ill-conditioning issue. In [25], an approach for deal-
ing with small intersections using b-spline finite elements
is introduced. Interior and exterior b-splines are defined by
the intersection size, and b-splines with a small intersection
are denoted as exterior. The degrees of freedom associated
with the exterior b-splines are expressed by a linear combina-
tion of the interior b-spline degrees of freedom. In [29,30],
a modified XFEM approach is proposed which introduces
an enrichment function associated with nodes defined by the
intersection of the interface with element edges. The enrich-
ment function is a scaled linear combination of Lagrangian
shape functions of the integration elements. A stable XFEM
is described in [1,27] which uses a local enrichment function
constructed from a linear interpolant of the global enrichment
function in the intersected elements. For problems with a
weak discontinuity in the solution at the interface, the enrich-
ment proposed in [22] is an example of a stable XFEM which
leads to optimal convergence rates. We note that the stability
of the enrichment in [1] relies on the use of a scaling matrix.
This, therefore, indicates that the enrichment proposed in
[22] also requires preconditioning to avoid ill-conditioning
due to small element intersections.

Finally, Hansbo et al. [13] and Wadbro et al. [37] pro-
pose to augment the weak formulation to produce a well-
conditioned system of equations independent of the interface
position. The solution for each subdomain separated by the
interface is considered, and a version of Nitsche’s method is
used to enforce the interface conditions. By adding additional
volume terms to the weak formulation, the ill-conditioning is
mitigated, but the solution error at the interface is increased.
While this error decreases with mesh refinement, for a given
mesh size this approach alters the solution of the discretized
system. Also, new formulations are required for different
governing equations since this approach alters the weak form.

In this work, a preconditioning scheme is proposed for
a generalized Heaviside enrichment [18] that consists of
a linear preconditioner and constraining degrees of free-
dom associated with small intersections. The Heaviside
enriched XFEM formulation provides great flexibility in
being applicable to a broad range of problem types with
strong and weak discontinuities, though enforcing continu-
ity at the interface is required for the latter. While a direct
comparison of the proposed preconditioning scheme to other
preconditioning methods is outside the scope of this paper,

123

40



www.manaraa.com

Comput Mech

some conceptual advantages for the proposed scheme are that
no special considerations are necessary in the mesh genera-
tion, the enrichment function is not modified, and the weak
formulation is unchanged. The construction of the precondi-
tioner only requires the nodal basis functions and interface
geometry; therefore, it may be constructed prior to build-
ing the discretized system of equations and is well suited
for nonlinear problems. One drawback is that constraining
degrees of freedom associated with small element intersec-
tions is necessary. However, the sensitivity of the solution
error to the constrained degrees of freedom is reduced by the
preconditioner.

Problems with static and prescribed moving interfaces are
studied, and numerical examples show condition numbers
for the XFEM using the proposed preconditioning scheme
similar to the standard FEM. The proposed approach shows
satisfactory performance for discontinuous problems and
C0-continuous problems with the stabilized Lagrange and
Nitsche methods [8,14,31] for enforcing continuity at the
interface.

The remainder of this paper is organized as follows:
Sect. 2 defines the model problem which is used to describe
the details of the proposed approach. Section 3 describes the
XFEM framework, Heaviside enrichment strategy, and inter-
face constraint formulation. Section 4 presents the proposed
preconditioning scheme for handling small intersections. In
Sect. 5, four numerical examples are presented to demon-
strate the key features of the preconditioning scheme.

2 Model setup

Here we consider solving a stationary diffusion equation for
a material with a single inclusion, as depicted in Fig. 2. The
model problem is used for the description of the numeri-
cal method, and the first two numerical examples of Sect. 5
are concerned with diffusion problems at steady state. While
we focus on this model problem for describing the details
of the preconditioning scheme, the method is applicable to
other problem types. In particular, the performance of the
preconditioning scheme for a transient nonlinear fluid flow

Fig. 2 Schematic of the model diffusion problem

problem with moving interfaces and a stationary interfacial
debond problem are presented in the third and fourth numer-
ical examples in Sect. 5.

The domain is comprised of two non-overlapping subdo-
mains, such thatD = D1∪D2 andD1∩D2 = ∅. The interface
between the two subdomains is defined as � = ∂D1 ∩ ∂D2.
A level set function φ(x) is constructed to define the location
of �, such that

φ(x) < 0 if x ∈ D1

φ(x) > 0 if x ∈ D2

φ(x) = 0 if x ∈ �. (1)

In this work, the signed distance function is used to define
the level set function,

φ(x) = ± min ‖x − x�‖, (2)

where x� is the interface location and ‖ · ‖ denotes the L2-
distance. Considering the particular case of diffusive heat
conduction, the model problem consists of finding the tem-
perature distribution, u(x), such that

− ∇ · (κ∇ui ) = f in Di

ui = us on ∂Di ∩ ∂DD

(κ∇ui ) · ni = qs on ∂Di ∩ ∂DN (3)

for i = 1, 2, where κ is the thermal conductivity tensor, f
is a volumetric heat source, and ui denotes the restriction
of u to Di . The temperature distribution us is specified on a
Dirichlet boundary ∂DD , and the heat flux qs is specified on
a Neumann boundary ∂DN . The outward unit normal to Di

is denoted by ni . Additionally, continuity of the solution and
flux across the interface � must be satisfied, such that

[[u]] = u1 − u2 = 0 on �

k1∇u1 · n1 + k2∇u2 · n2 = 0 on �. (4)

Without loss of generality, the materials are assumed to
be isotropic, i.e. κ = k I. The conductivity k is defined as

k(x) =
{

k1 if x ∈ D1

k2 if x ∈ D2
(5)

with constants k1 and k2.

3 Extended finite element method

The traditional finite element method requires a mesh which
conforms to the interface to implicitly satisfy the temperature
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continuity and to capture the discontinuity in the tempera-
ture gradients at �. Alternatively, the extended finite element
method is used to locally capture the non-smooth solution at
the interface without using a mesh which conforms to �. In
this section, we briefly outline the particular XFEM approach
used here for solving the governing equation in (3).

The weak form of the governing equations is constructed
by multiplying (3) by a set of admissible test functions and
integrating over D. The space V = H1(D) is the Hilbert
space consisting of functions with square integrable first
derivatives and V0 = {v ∈ V : v|∂DD = 0}. Let u ∈ V
be the solution and v ∈ V0 be an admissible test function.
The weak form of the model problem is stated as: Find u ∈ V
such that u = us on ∂DD and

∫
D

(κ∇u)·∇v dx−
∫

D
f v dx−

∫
∂DN

qsv ds = 0 ∀v ∈ V0.

(6)

Note that the continuity conditions were used to express the
weak form in (6), such that [[u]] = 0 at � and

∫
�

(k1∇u1 · n1)v ds +
∫

�

(k2∇u2 · n2)v ds = 0. (7)

In the XFEM, the traditional finite element approxima-
tion is augmented by an enrichment function and addi-
tional degrees of freedom. The choice of enrichment func-
tion affects the convergence and accuracy of the approxi-
mation, and various types of enrichment functions have been
proposed. A C0-continuous enrichment function [3,9,22,32]
inherently satisfies the solution continuity at � and is applica-
ble to problems with a weak discontinuity at the interface. A
step enrichment function, such as a Heaviside or sign func-
tion, may be applied to problems with a strong or weak dis-
continuity in the solution at �. For the latter approach, the
approximation of the weak form (6) needs to be augmented
by constraints to satisfy the temperature continuity at the
interface.

Here, we follow the work of Terada et al. [33] and Tran
et al. [35] and adopt a generalized version of the Heaviside
enrichment strategy of Hansbo and Hansbo [12]. As recently
shown by Makhija and Maute [18], this implementation of
the XFEM provides great flexibility in discretizing a broad
range of partial differential equations with multiple phases
for any choice of nodal basis functions. However, the Heav-
iside enrichment can lead to a system of equations that is ill-
conditioned [10,20]. The remainder of this section describes
the details of the generalized Heaviside enrichment strategy
and the interface constraint formulation.

3.1 Generalized heaviside enrichment

Consider a finite element mesh, Th , for D consisting of ele-
ments with edges that do not necessarily coincide with �. A
Heaviside enrichment function is implemented in the XFEM
formulation such that the approximation of u(x), denoted by
uh(x), for two phases is defined as

uh(x) =
M∑

m=1

(
H(−φ(x))

∑
i∈I

Ni (x)u(1)
i,m

+H(φ(x))
∑
i∈I

Ni (x)u(2)
i,m

)
, (8)

where I is the set of all nodes in Th , Ni (x) is the nodal basis
function, M is the maximum number of enrichment levels,
u(p)

i,m is the degree of freedom at node i for phase p ∈ {1, 2},
and H is the Heaviside function,

H(z) =
{

1 z > 0
0 z ≤ 0

. (9)

In this formulation, a single basis function, Ni , is used for
each node. Additional nodal degrees of freedom are added
for each phase and enrichment level.

The need for multiple enrichment levels is illustrated by
the example configurations shown in Fig. 3. For the multiple

Fig. 3 Example configurations
requiring multiple enrichment
levels at the center node for a
multiple inclusions and b a
single inclusion

(a) (b)
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inclusions in Fig. 3a, four quadrilateral elements share a cen-
tral node that is connected to the phase 1 domain and three
inclusions belonging to phase 2. The center node requires one
degree of freedom for the phase 1 solution and three degrees
of freedom in order to individually interpolate the solutions
in the three inclusions. The work in [35] addresses configura-
tions with multiple inclusions by assigning multiple level set
functions and adding enriched degrees of freedom for each.
However, additional enrichment levels may also be required
for a single inclusion. For the configuration in Fig. 3b, the
center node requires one degree of freedom for the phase 1
solution and two degrees of freedom for the the disconnected
regions belonging to phase 2.

By generalizing the Heaviside enrichment to multiple lev-
els, accurate solutions can be determined for neighboring
intersected elements and elements intersected more than once
using a single level set function. The number of enrichment
levels required at a single node is determined by the number
of disconnected regions of the same phase included in the
support of the nodal basis function. Note that while a max-
imum number of enrichment levels is specified in (8), some
enrichment levels are not used. The degrees of freedom corre-
sponding to the unused enrichment levels are removed from
the system of equations. Further details of this generalized
enrichment strategy is provided in [18].

3.2 Interface constraint formulation

While the continuity of the solution at the interface (4) is
inherently satisfied using a C0-continuous enrichment func-
tion, the Heaviside enrichment requires an additional con-
straint to enforce the continuity. Common approaches for
enforcing an interface constraint in the XFEM include the sta-
bilized Lagrange multiplier and Nitsche methods [8,14,31].
Here, both constraint formulations are used for enforcing
continuity at the interface for the model problem.

The weak form using the stabilized Lagrange multiplier
method is stated as: Find (u, λ) ∈ (V × W ) such that u = us

on ∂DD and

∫
D

(κ∇u) · ∇vdx −
∫

D
f vdx −

∫
∂DN

qsvds

−
∫

�

[[v]]λd� +
∫

�

μ (λ − {k∇u · n}) d�

+ γS

∫
�

μ[[u]]d� = 0 ∀(v, μ) ∈ (V0 × W ) , (10)

where λ is the Lagrange multiplier, W = H−1/2(�) is the
space for the Lagrange multiplier, μ is the associated test
function, γS is a constraint factor, and {·} = 1

2 (·)1 + 1
2 (·)2

denotes the mean operator on the interface.

(a) (b)

Fig. 4 Triangulated partition of a four element configuration leading
to a a well-conditioned and b ill-conditioned system

For Nitsche’s method, the weak form is stated as: Find
u ∈ V such that u = us on ∂DD and

∫
D

(κ∇u) · ∇vdx −
∫

D
f vdx −

∫
∂DN

qsvds

−
∫

�

[[v]] {k∇u · n} d� −
∫

�

{k∇v · n} [[u]]d�

+ γN

∫
�

[[v]][[u]]d� = 0 ∀v ∈ V0 , (11)

where γN is a constraint factor for Nitsche’s method.

3.3 Discretization

The level set function is discretized by the finite element
mesh, such that

φ(x) =
∑
i∈I

Ni (x)φi , (12)

where φi is the value of the level set function at node i . In
this work, the interface position is prescribed by determining
φi at each node using the signed distance function (2). Since
φ(x) is discretized by the finite element mesh, the resolution
of the inclusion geometry is dependent on Th and improves
with mesh refinement. The intersection of � with an element
edge is identified by a sign change in φi for a pair of edge
nodes. The intersection of � directly through a node or an
element edge is avoided by enforcing φi 
= 0. For any node
i where |φi | < φmin , the nodal level set value is changed
to φi = −φmin . For the examples in this work, φmin =
2 × 10−9

√
Ae

π
where Ae is the geometric element area.

Accurate integration over intersected elements is per-
formed by partitioning the element domain, De, for piecewise
integration. In particular, we partition De using a triangula-
tion aligned with �. An illustration of the triangulation is
shown in Fig. 4 for two configurations of the interface using
four elements.

We consider a uniform mesh for Th constructed with
quadrilateral elements. Bilinear nodal basis functions are
used for Ni (x), and elemental Lagrange multipliers are intro-
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duced for the stabilized Lagrange multiplier method. We
choose a constant or linear approximation of λ along the
interface � in an intersected element. This approximation
for λ is chosen for convenience, as it allows condensing the
Lagrange multiplier degree of freedom at an elemental level;
other approximations of the Lagrange multiplier can be used
in the formulation (10).

The system of equations is constructed by substituting the
approximation (8) into the weak form (10) or (11). Following
the Bubnov–Galerkin method, the integration in (10) or (11)
is performed over each element and assembled to construct
the system of equations. The discretized system of equations
is given by

Kû = f , (13)

where û is the solution vector collecting the degrees of free-
dom u(1)

i,m and u(2)
i,m , and K and f are the conduction matrix

and load vector, respectively. For the case in which (13) may
be linear or nonlinear, the system residual and Jacobian may
be used with the Newton–Raphson method to solve the sys-
tem. For the remainder of this paper, we refer to the system
residual, R, and Jacobian, J, defined as

R = Kû − f (14)

Ji j = ∂ Ri

∂u j
. (15)

Note that for a linear system of equations, J = K and only
one iteration in the Newton–Raphson method is required.

4 Preconditioning scheme

We propose a preconditioning scheme in order to transform
the system of equations into a form that is well-conditioned
and suitable for solving iteratively. For the configuration
shown in Fig. 4b, the lower left element has a small ratio
of intersected areas. The region of influence for the degree
of freedom at the lower left node interpolating phase 2
approaches zero as the interface approaches the center node.
The region of influence for a degree of freedom is the inter-
section of the nodal basis function support with the physical
subdomain Di . Our aim is to mitigate the sensitivity of the
residual to the dissimilar regions of influence for the degrees
of freedom. The proposed approach consists of transform-
ing the degrees of freedom by a preconditioning matrix and
constraining degrees of freedom associated with small inter-
sections to zero. The small intersections are ignored for the
constrained degrees of freedom, which are removed from
the equations when solving the system. When constraining
degrees of freedom only without using the preconditioning
matrix [24], the solution accuracy decreases as the condition

number is reduced. The proposed approach solves the prob-
lem in a transformed space and does not change the solution
to the discrete problem. We will show in Sect. 5 that the pre-
conditioning scheme maintains an approximately constant
condition number without loss of solution accuracy.

A geometric preconditioner T is introduced, such that the
solution in the physical space, û, is obtained by

û = Tũ, (16)

where ũ is the solution in the transformed space. The resid-
ual and Jacobian of the system in the transformed space are
defined as

R̃ = TT R

J̃ = TT JT. (17)

Note, the residual R and the Jacobian J are constructed
in a standard fashion using the XFEM. For problems with
dynamically evolving interfaces, such as phase change and
multi-phase flow problems [4,5,38], the discretized level set
field contributes degrees of freedom to the solution vectors û
and ũ. In this case, the Jacobian J̃ contains additional terms.
We omit a detailed discussion of this class of problems and
focus on problems with static or prescribed interface geome-
tries.

The purpose of the geometric preconditioner is to balance
the influence for degrees of freedom as the intersected areas
approach zero. There are two issues associated with the inter-
sected areas approaching zero. First, the partitioned element
integration, and therefore the diagonal entry of the element
matrix, approaches zero because the area of integration is
small. Second, the influence of a degree of freedom on the
residual will vanish as the region of influence approaches
zero.

Here, we construct a diagonal preconditioning matrix for
T from the nodal basis functions and their support in order
to transform the degrees of freedom. The proposed approach
accommodates other choices for T, both diagonal and non-
diagonal. However, diagonal scaling is more computationally
efficient in terms of memory and matrix operations. The pre-
conditioning matrix T is constructed by integrating the nodal
basis functions (T N ) or derivatives (T B) over the nodal sup-
port. The diagonal components of the T N preconditioning
matrix are defined as

T (p)
i,m =

(
max
e∈Ei

∫
De

p,m
Ni (x)dx∫

De Ni (x)dx

)− 1
2

, (18)

where T (p)
i,m corresponds to the degree of freedom u(p)

i,m at node
i , and Ei is the set of elements connected to node i . Here,
De

p,m denotes the element domain which belongs to phase p
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for enrichment level m. The diagonal components of the T B

preconditioning matrix are defined as

T (p)
i,m =

(
max
e∈Ei

∫
De

p,m
∇Ni (x) · ∇Ni (x)dx∫

De ∇Ni (x) · ∇Ni (x)dx

)− 1
2

. (19)

In practice, the components T (p)
i,m are only computed at nodes

connected to an intersected element. If all elements in Ei are
non-intersected, then the degrees of freedom at node i are
not transformed and T (p)

i,m = 1.
The T N and T B geometric preconditioners both lead

to scaling terms that increase as the region of influ-
ence for degrees of freedom approaches zero. The region
of influence is measured by maxe∈Ei

∫
De

p
Ni (x)dx and

maxe∈Ei

∫
De

p
∇Ni (x) · ∇Ni (x)dx in (18) and (19), respec-

tively. For a given problem, the choice of the preconditioner
type can be determined by the dominating operator in the
partial differential equation. Based on the construction of the
system of equations, the T B preconditioning matrix is more
appropriate for diffusion dominated problems, while T N is
appropriate for convection or reaction dominated problems.

The preconditioner T improves the condition number by
balancing the influence of the degrees of freedom. However,
as the preconditioner is constructed using the nodal basis
functions, the scaling terms in T do not approach ∞ at the
same rate as the region of influence approaches zero. There-
fore, an ill-conditioned system of equations may still result
when the ratio of intersected areas approaches zero. In addi-
tion to the preconditioner, we propose to constrain degrees
of freedom to zero with small regions of influence. The cri-
terion for selecting the degrees of freedom to be constrained
to zero is defined as

T (p)
i,m > Ttol , (20)

where Ttol is a specified tolerance. It is shown in Sect. 5 that
there is a wide range for the choice of Ttol which does not
impact the numerical error and condition number. Constrain-
ing degrees of freedom to zero is needed when T (p)

i,m � 1. The
numerical studies in Sect. 5 suggest values for Ttol between
104 and 108.

A summary of applying the proposed preconditioning
scheme to a nonlinear problem solved by the Newton–
Raphson method is outlined below:

1. Construct Th and φ.
2. Construct T using (18) or (19) and mark degrees of free-

dom to be constrained by (20).
3. Obtain transformed initial guess by the inverse operation

of (16).
4. Solve iteratively the problem R̃ = 0 for ũ as follows:

(a) Reconstruct T and update degrees of freedom to be
constrained.

(b) Obtain current solution by (16).
(c) Construct R and J.
(d) Obtain R̃ and J̃ by (17).
(e) Solve transformed system for �ũ.
(f) Update solution and check for convergence.

5. Obtain final solution, û, by (16)

As shown in the implementation outline, T is constructed
prior to computing the residual and Jacobian. If the interface
geometry is prescribed and independent of the solution, then
the level set field and hence T do not change in the Newton
iterations. In this case, step 4(a) is not necessary.

5 Numerical examples

In this section, the performance of the preconditioning
scheme is studied for four problems. The first example illus-
trates the basic concept of the preconditioning scheme when
solving a diffusion problem for a two-material bar. The sec-
ond example is a diffusion problem with a circular material
inclusion. For these examples, the accuracy of the solution
as well as the condition number of the systems are exam-
ined with and without the proposed preconditioning scheme.
The third example is a transient flow problem with a moving
rigid obstacle, modeled by the incompressible Navier–Stokes
equations. This example demonstrates the applicability of the
proposed scheme to nonlinear transient problems with mov-
ing interfaces. Finally, the fourth example studies the solu-
tion accuracy and system condition number for an interfacial
debond problem with and without the proposed precondi-
tioning scheme. While the examples in this paper consider
2D problems, the extension of the proposed preconditioning
scheme to 3D problems is straight-forward as discussed in
[36].

5.1 Example 1: two-material bar diffusion

We illustrate the basic concept of the preconditioning scheme
for a simple example with an analytical solution. We consider
solving the heat conduction model for the two-material bar
shown in Fig. 5. The length of the bar is L , and temperatures
u1 and u2 are specified at x = 0 and x = L , respectively. The
material conductivity is k1 = 1 in D1 and k2 = 2 in D2. The
position of the vertical interface is measured from the left
end and specified by r . The problem is solved using quadri-
lateral elements. While the exact solution can be captured
using one element, we discretize the bar with five elements
in order to vary the position of the interface across one ele-
ment. Note that while this example is useful for explaining
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Fig. 5 Problem description for example 1

the concept and demonstrating the reduced condition num-
ber, it is not well suited to illustrate a change in the accuracy
of the solution due to an ill-conditioned system. Without pre-
conditioning, an ill-conditioned system will occur when the
interface is nearly aligned with an element edge. In the inter-
sected element, a ratio of the area of the phase 1 and phase
2 regions with a value less than 10−13 results in a condition
number greater than 1014. With the level set shift described in
Sect. 3.3 and a converged mesh, the XFEM solution matches
the analytical solution for this example.

The interface position is varied from r/L = 0.3 to
r/L = 0.7 in steps of �r/L = 0.002. Element 3 is inter-
sected for 0.4 < r/L < 0.6. As r/L approaches 0.4 and
0.6, the ratio of intersected areas in element 3 becomes
small. The preconditioning scheme using the T B matrix and
Ttol = 104 is selected for the example bar problem. The
stabilized Lagrange multiplier method with γS = k1 + k2

and an element-wise constant approximation for λ is used
for enforcing continuity at the interface.

There are four degrees of freedom for element 3 at nodes
1 to 4 which have small regions of influence as the interface
position is varied. Since the problem is one-dimensional, we
only consider nodes 1 and 2, and focus on the degrees of
freedom u(2)

1,1 and u(1)
2,1. The degree of freedom u(2)

1,1 is used
for interpolating the phase 2 solution in element 3, and it has
a small region of influence when r/L ≈ 0.6. The degree of
freedom u(1)

2,1 is used for interpolating the phase 1 solution
in element 3, and it has a small region of influence when
r/L ≈ 0.4.

The T B values corresponding to these degrees of freedom
are shown in Fig. 6a as the interface location varies. The T (2)

1,1

and T (1)
2,1 values increase as the ratio of intersected areas in

element 3 decrease. The diagonal components of J̃ corre-
sponding to u(2)

1,1 and u(1)
2,1 without preconditioning (T = I)

and with the preconditioner T B are shown in Fig. 6b. The
diagonal components of J̃ with T = T B do not reduce to zero
as the ratio of intersected areas approach zero. The jumps in
J̃i i at r/L = 0.4 and r/L = 0.6 result from the stabilized
Lagrange method for enforcing continuity at the interface.

The condition number of J̃ is shown as a function of the
interface position in Fig. 7. The condition number was deter-
mined without and with the preconditioning scheme, denoted
by T = I and T = T B , respectively. No degrees of free-
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Fig. 6 The diagonal components of a T B and b J̃ corresponding to
the degrees of freedom u(2)

1,1 and u(1)
2,1. Here J̃11 and J̃22 correspond to

u(2)
1,1 and u(1)

2,1, respectively

dom were constrained for Ttol = ∞. The condition number
is improved for T = T B and Ttol = ∞, but is still large
near r/L = 0.4 and r/L = 0.6. By constraining degrees of
freedom according to Ttol in (20), the condition number at
r/L = 0.4 and r/L = 0.6 is significantly reduced. The phys-
ical and transformed solutions for the degrees of freedom u(2)

1,1

and u(1)
2,1 are shown in Fig. 8. The physical degrees of freedom

jump to zero when element 3 is not intersected. The influ-
ence of the preconditioning for u(2)

1,1 and u(1)
2,1 occurs when

element 3 is intersected. The projected degrees of freedom
vary to zero as the ratio of intersected areas approach zero.

5.2 Example 2: circular inclusion diffusion

The second numerical example is the heat transfer problem
shown in Fig. 9. The model problem (3) is solved for a square
domain D = (−10, 10)× (−10, 10) with a centered circular
inclusion of radius r . The radius is varied from r = 3 to r = 7
in steps of �r = 0.02. Material 1 has a conductivity k1 = 2
in D1, and material 2 has a conductivity k2 = 2 × 103 in
D2. The temperature is specified as u = 0 on the left bound-
ary and u = 100 on the right boundary. The top and bottom
edges are adiabatic. The computational domain is discretized
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Fig. 8 The physical (û) and projected (ũ) solutions for the degrees of
freedom a u(2)

1,1 and b u(1)
2,1

with a uniform 20 × 20 mesh resulting in approximately 470
unknowns. The exact number of degrees of freedom depends
on the intersection configuration. The two methods of enforc-
ing the solution continuity at the interface (10) and (11) are
considered with γS = k1 + k2 and γN = 10−3(k1 + k2). An
element-wise constant approximation for λ is used for the
stabilized Lagrange multiplier method.

The condition number of the system of equations depends
on the configuration of the intersections and the ratio of con-

Fig. 9 Problem description for example 2
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Fig. 10 Minimum element area ratio, Amin , for example 2

ductivities. A high ratio of conductivities, also considered in
[7,19], is used here to highlight the ill-conditioning issue for
this simple example problem. The ratio of intersected areas
is examined for the variation of the radius by determining the
minimum element area ratio, defined as

Amin = min
e∈T c

h

De
1

De
2

, (21)

where T c
h is the set of intersected elements. The variation

of Amin with r is shown in Fig. 10. Note the vertical axis is
reversed, such that small intersections are indicated by the
peaks. The minimum area ratios of order 10−5 and 10−18

which occur for the variation of r lead to a high condition
number of the system.

Three studies were performed for this example. The first
study shows the influence of Ttol in (20) on the condition
number and solution accuracy. The second study is a com-
parison of the condition number using a body-fitted mesh,
XFEM with a Jacobi preconditioner, and XFEM with the pro-
posed preconditioning scheme. Finally, we study the influ-
ence of the preconditioning scheme on the performance of
an iterative solver.

To study the influence of Ttol on the condition number
and solution accuracy, the T B preconditioning matrix and the
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stabilized Lagrange multiplier method are used. The value of
Ttol is varied from Ttol = 10 to Ttol = 108. The maximum
condition number of J̃ and solution error is computed for each
value of Ttol by considering all values of r . The maximum
condition number, condmax , is defined by

condmax = max
r

cond(J̃). (22)

The accuracy of the XFEM solution is measured by integrat-
ing the L2 relative error, such that the total error for each
value of Ttol is defined by

etotal =
∫ 7

3

‖uh(r) − ure f (r)‖2

‖ure f (r)‖2
dr, (23)

where ure f (r) is a reference solution for radius r obtained
using a body-fitted finite element mesh with an element size
of h ≈ 0.05 leading to approximately 154,000 degrees of
freedom.

The influence of Ttol on the condition number and solution
error is shown in Fig. 11 with and without the preconditioning
matrix. For T = I, the preconditioning matrix is only used
for the criterion on constraining degrees of freedom in (20)
and not applied when solving the system of equations. In
both cases, T = I and T = T B , the solution error decreases
as Ttol is increased. For T = I, this corresponds to a drastic
increase in the condition number while the condition number
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Fig. 11 Influence of Ttol on the a maximum condition number and b
approximation error computed from (22)–(23) for example 2
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radius using the stabilized Lagrange method for example 2
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Fig. 13 Comparison of the condition number for a varying inclusion
radius using Nitsche’s method for example 2

remains approximately constant for T = T B . Note that the
same number of degrees of freedom were constrained to zero
for Ttol values of 106, 107, and 108.

The second study compares the condition number for var-
ious choices of T. The condition number of J̃ is computed for
the variation of r using XFEM with the stabilized Lagrange
and Nitsche methods. The condition number of J̃ using a
body-fitted mesh with an element size of h ≈ 0.5 and T = I
was also computed. A Jacobi preconditioner is implemented
by defining

T jac = diag(J)−
1
2 . (24)

Note that T jac is a solver preconditioner which operates on
the Jacobian after it is assembled. In contrast to the proposed
preconditioner, T jac does not utilize geometric information
of the intersection configuration. Finally, the condition num-
ber of J̃ is computed using the T N and T B preconditioning
matrices with Ttol = 108. A comparison of the condition
numbers for the variation of r is shown in Figs. 12 and 13.
No degrees of freedom were constrained for T = I and
T = T jac, which corresponds to Ttol = ∞. For T = I,
the condition number using XFEM varies with the size of
the inclusion up to an order of 1020. The r values of the high
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condition numbers correspond to the small intersections seen
in Fig. 10. For T = T jac, the condition number is compara-
ble to that of the body-fitted FEM system for the stabilized
Lagrange method (Fig. 12) but not Nitsche’s method (Fig.
13). This suggests that the condition number is influenced by
the off-diagonal terms in J for Nitsche’s method. However,
for T = T N and T = T B , the XFEM condition number is
comparable to the body-fitted FEM system for both stabilized
Lagrange and Nitsche methods for all interface positions.

The third study examines the influence of the precondi-
tioning scheme on the performance of an iterative solver by
solving the system of equations using the generalized mini-
mal residual method (GMRES) [26]. A solver preconditioner,
M, was implemented to compare with the performance of the
preconditioning scheme. A Jacobi, M jac, and incomplete LU
with zero fill-in, Milu , were chosen as the solver precondi-
tioners. The number of iterations, nitr , required to satisfy
‖f − Kû‖2 < 10−6 was determined using the physical solu-
tion. The solution error was determined as

eL2 = ‖uh − ure f ‖2, (25)

where ure f is a reference solution computed on the 20 × 20
mesh using a direct solver with T = I. Note, the body-fitted
FEM reference solution was not used here in order to distin-
guish the iterative solver error and the discretization error.

Also, the reference solution and the error eL2 at r = 5 is
not available because the direct solver fails due to the high
condition number. A comparison of the number of required
iterations and the solution error is shown in Figs. 14 and 15
with and without T B and M. No degrees of freedom were
constrained for T = I, denoted by Ttol = ∞. The com-
bination of the geometric preconditioner and Jacobi solver
preconditioner was not included here since both are diagonal
preconditioners.

As expected, the number of required iterations is reduced
with the preconditioning scheme using both the stabilized
Lagrange and Nitsche methods. The solver precondition-
ers reduce the number of iterations more than the projec-
tion scheme alone. However, the Jacobi preconditioner is not
robust as the solver fails for some of the values of r . The
geometric preconditioning scheme may be combined with
a solver preconditioner. The incomplete LU preconditioner
with and without T B has the fewest required iterations. In
this case, the proposed preconditioning scheme adds robust-
ness, ensuring an almost constant number of iterations for all
interface geometries. While the geometric and solver precon-
ditioners may be combined, the advantage of the geometric
preconditioner is that it is computed prior to constructing
the system matrices. This is particularly useful for large size
and/or nonlinear problems, as the geometric preconditioner
is only computed once for each interface configuration.
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Fig. 14 The a number of iterations, b eL2 with no solver preconditioner, and c eL2 with solver preconditioners M jac and Milu using the stabilized
Lagrange method. The open circles in a mark the values of r at which the iterative solver failed to satisfy the stopping criterion
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Fig. 16 Problem description for example 3

5.3 Example 3: moving cylinder in channel flow

In this example, a 2D transient nonlinear problem with a
moving interface is considered. A rigid cylinder immersed
in a channel flow is oscillating perpendicular to the inflow
direction. The flow is modeled by the incompressible Navier–
Stokes equations, and the motion of the cylinder is prescribed
by defining the level set field as an explicit function of time.
The problem setup is depicted in Fig. 16. Note the fluid prob-
lem is modeled and solved in non-dimensional form. We
study the stability and accuracy of the flow solution with and
without the proposed preconditioning scheme for different
Ttol values for constraining degrees of freedom.

Along the channel inlet a parabolic inflow is prescribed.
The outlet is assumed traction-free, and stick conditions are
enforced at the upper and lower channel walls. The position
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Fig. 17 Evolution of non-dimensional inlet and cylinder velocities

of the cylinder and velocity along the cylinder surface, i.e.
fluid–solid interface, are determined from the prescribed evo-
lution of the discretized level set field. The flow response is
simulated over 250 time steps with a non-dimensional time
step size of �t = 0.05. To facilitate the transient simulation
of the flow field, we ramp up over time both the inlet con-
ditions and the motion of the cylinder. The velocity profiles
of the cylinder and inlet flow are depicted in Fig. 17. The
Reynolds number with respect to the maximum average inlet
velocity is 100.

The weak form of the incompressible Navier–Stokes equa-
tions is discretized by four-node finite elements, i.e. the
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Fig. 18 The a minimum elemental fluid area ratio, and b the maximum
entry in the preconditioning matrices T N and T B in each time step

velocity and pressure fields are approximated piecewise by
bilinear, equal-order interpolations. To avoid numerical insta-
bilities we employ an SUPG/PSPG stabilization scheme [34].
The velocity boundary condition along the fluid–solid inter-
face is enforced by a stabilized Lagrange multiplier for-
mulation [11]. The Lagrange multipliers are approximated
element-wise by bilinear shape functions. The reader is
referred to Kreissl and Maute [15] for additional details on the
XFEM implementation of the flow model. The flow solution
is advanced in time with an Euler-backward time integra-
tion scheme. In each time step, the nonlinear sub-problem is
solved by the Newton–Raphson method, and a direct solver
is applied to the linearized problem. The nonlinear residual
is required to drop by 10% in each time step.

First we discretize the channel with 6912 elements and
7105 nodes. The mesh in the vicinity of the cylinder is uni-
form with a non-dimensional element size of 0.085 × 0.085.
Initially, 48 elements are intersected by the fluid–solid inter-
face and the flow field is approximated by 63, 255 degrees
of freedom. As the cylinder oscillates, the intersection con-
figuration, number of intersected elements, and number of
degrees of freedom change slightly. The evolutions of the
minimum ratio of elemental fluid area over the total elemental
area and the maximum entries in the preconditioning matrix
for the T N and T B formulations are shown in Fig. 18. The
minimum area ratios of order 10−7 lead to large entries in
the preconditioning matrix. The maximum entries in T N are

Table 1 Maximum number of constrained degrees of freedom

Ttol Max constrained dofs

108 0

106 3

104 9

102 18

101 30

slightly larger than the ones in T B but are of the same order.
The evolution of both formulations is similar.

We compare the performance of the proposed precon-
ditioning scheme against an approach where only degrees
of freedom with vanishing influence are constrained. We
examine the evolution of the total horizontal and verti-
cal forces acting on the cylinder, and we consider Ttol =
[108, 106, 104, 102, 101] for determining the constrained
degrees of freedom. As shown in Fig. 18, the maximum
value of the preconditioning matrix is less than 108 for all
time steps. Therefore no degrees of freedom are constrained
for Ttol = 108. For Ttol ≤ 106, the number of constrained
degrees of freedom increases as Ttol is reduced. The number
of constrained degrees of freedom varies with time, and the
maximum is shown in Table 1 when T B is applied.

Without the proposed preconditioning scheme, the tran-
sient simulation diverges for Ttol > 104. The evolu-
tions of the total horizontal and vertical forces for Ttol =
[104, 102, 101] are depicted in Fig. 19. Note, the results are
shown only after 50 time steps for which the influence of
ramping up the inlet and cylinder velocities has sufficiently
faded. The force evolutions for Ttol = 104 and Ttol = 102 are
similar. However, if Ttol is chosen too low, here Ttol = 101,
the forces erroneously oscillate. The different intersection
configurations due to the moving cylinder lead to oscillating
errors, as discussed in Sect. 5.2. The smaller values for Ttol

increase the error by constraining more degrees of freedom
associated with small intersected areas. The proper choice of
Ttol is not known a priori.

In contrast, no convergence issues were observed with the
proposed preconditioning scheme for both formulations of
the preconditioning matrix. In Fig. 20, the evolution of the
total forces are shown using the T B preconditioning matrix.
Note, as the results for Ttol = [108, 106, 104] are indistin-
guishable, only the results for Ttol = [108, 102, 101] are
shown. The results for the T N preconditioning matrix are
nearly identical and therefore not shown. Using either T B or
T N in determining the degrees of freedom to be constrained
to zero, a similar behavior can be observed: if Ttol is too low
the forces erroneously oscillate with a high frequency. This
behavior seems to be less pronounced when the precondi-
tioning matrix is used.
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Fig. 19 Evolution of the total force in the a horizontal and b vertical
directions for different values of Ttol when no geometric preconditioner
is applied
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Fig. 20 Evolution of the total force in the a horizontal and b vertical
directions for different values of Ttol using the T B preconditioning
matrix
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Fig. 21 Comparison of the total vertical force for different values of
Ttol with and without T B

Table 2 Mesh refinement study

Nodes Elements Intersected elements

7,105 6,912 48

12,545 12,288 64

28,033 27,648 92

37,465 37,044 120

A direct comparison of the results obtained with and with-
out the T B preconditioning matrix are depicted in Fig. 21.
Here we only compare the total force in vertical direction
for Ttol = [108, 104]. The results for the total force in the
horizontal direction show similar behaviors and are therefore
omitted. Recall the simulations diverge for Ttol = 108 when
no preconditioner is used. While the results with T B are indis-
tinguishable for Ttol = [108, 104], the cross-comparison
between the force evolutions for Ttol = 104 shows a slight
difference. This is attributed to the different convergence
behavior; the convergence of the Newton–Raphson method
is once monitored in the physical and once in the transformed
space. As a stricter convergence is enforced, the difference
decreases.

The robustness provided by the preconditioning scheme
allows the problem to be solved on refined meshes. We exam-
ine the total horizontal and vertical forces acting on the cylin-
der using different mesh sizes. The considered mesh sizes and
the number of initially intersected elements are given in Table
2. The evolution of the total force for a sequence of refined
meshes is shown in Fig. 22. For Ttol = 108, no degrees of
freedom were constrained for all mesh sizes. The force evo-
lutions converge as the mesh is refined. The high frequency
oscillations present in the coarsest mesh vanish with mesh
refinement.

5.4 Example 4: circular inclusion interfacial debond

The fourth numerical example considers a problem with a
strong discontinuity in the solution at the interface. Follow-
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Fig. 22 Evolution of total vertical forces in horizontal and vertical
directions for different mesh refinement levels using the T B formulation
of the geometric preconditioner with Ttol = ∞

ing the work in [17], the interfacial debonding in a micro-
mechanical analysis of a composite material is studied using
the proposed preconditioning scheme. The problem setup is
depicted in Fig. 23. The problem is solved on a square domain
with a centered circular fiber inclusion in tension along the x
direction. The debond between the fiber and matrix is mod-
eled before crack initiation under plane strain conditions.
The radius of the fiber is varied from r = 3 to r = 7 mm in
steps of �r = 0.02, and the size of the domain is L = 20
mm. The Young’s modulus and Poisson’s ratio for the matrix
material in D1 are E1 = 4.6 GPa and ν1 = 0.4, respectively.
The fiber material in D2 has E2 = 232 GPa and ν1 = 0.3.
The normal displacement at the bottom, left, and top edges
is constrained to zero. The normal displacement at the right
edge is specified as ud = 0.02 mm.

The bilinear cohesive zone model described in [17] is used
for the interface debond with the properties σmax = 0.01
GPa, δc = 0.001 mm, and δe = 0.02 mm. The solution proce-
dure uses 10 uniform steps to ramp up the specified displace-
ment. Figure 24 shows the microscopic stress σxx for r = 5
mm with the debond between matrix and fiber depicted.

Two studies were performed for this example to investi-
gate the performance of the preconditioning scheme. The first
study compares the condition number of the system of equa-
tions with and without the geometric preconditioner. The sec-

Fig. 23 Problem description for example 4 shown with a mesh size of
h = 1

Fig. 24 Microscopic stress in the x direction with h = 0.0625 for
example 4

ond study shows the influence of Ttol on the condition number
and solution accuracy. Note that the interface configurations
for this example obtained by varying the inclusion radius are
the same as Example 2. Therefore the minimum element area
ratio shown in Fig. 10 also applies to this example for a mesh
size of h = 1.

To study the performance of the preconditioning scheme
on the conditioning of the system of equations, the condition
number was computed for the final Newton iteration of the
last solution step. There is little change in the condition num-
ber of the system of equations during the Newton iterations
and load steps. The condition number was computed with no
preconditioner and the T N and T B preconditioning matrices
for a mesh size of h = 1. No degrees of freedom were con-
strained without the preconditioner, and Ttol = 108 was used
for both preconditioning types. Figure 25 shows the condi-
tion number is reduced using the preconditioning schemes.
For this problem, T = T B shows the best performance at
reducing the condition number for all interface positions.

The second study investigates the influence of Ttol on the
condition number and solution accuracy with and without the
T B preconditioning matrix. The value of Ttol is varied from
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Fig. 25 Comparison of the condition number for a varying inclusion
radius with h = 1 for example 4
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Fig. 26 Influence of Ttol on the a maximum condition number and
b approximation error for example 4

Ttol = 10 to Ttol = 108, and the condition number for the
final load step and displacement approximation uh is deter-
mined for each value of r . For T = I , the preconditioning
matrix is only used in (20) and not applied when solving the
system of equations. The maximum condition number and
total solution error are determined by (22–23). The reference
solution, ure f , is computed using XFEM with a uniform mesh
of size h = 0.0625. The influence of Ttol on the maximum
condition number and total solution error is shown in Fig. 26
with and without the preconditioning matrix for mesh sizes
of h = 1 and h = 0.5. The influence of Ttol is similar to
the results for Example 2 shown in Fig. 11. The maximum
condition number is reduced by decreasing Ttol for T = I,

as more degrees of freedom are constrained to zero. But the
solution error increases as the condition number is reduced.
Using T = T B , the maximum condition number is reduced
for all values of Ttol . The insensitivity of the condition num-
ber with respect to Ttol for T = T B allows using a higher
Ttol , which results in a lower solution error.

6 Conclusions

A simple and efficient preconditioning scheme has been
proposed for Heaviside enriched XFEM problems which
transforms the discretized governing equations into a well-
conditioned form. The preconditioning scheme consists of a
geometric preconditioner and constraining degrees of free-
dom to zero which interpolate the solution in small areas
of intersection. The geometric preconditioner is constructed
from the nodal basis functions and the interface configura-
tion. Therefore the preconditioning matrix can be computed
prior to constructing the system matrices, making it well-
suited for nonlinear problems. The ill-conditioning due to
small element intersections is eliminated, and the condition
number of the system matrices is comparable to that of a
body-fitted mesh using the traditional FEM.

Constraining degrees of freedom associated with small
intersections is necessary. However, the proposed precondi-
tioner reduces the sensitivity of the solution error with respect
to the condition number. We have shown that when only
selecting degrees of freedom to constrain to zero without the
preconditioning matrix, there is a strong trade-off with reduc-
ing the condition number and a loss in solution accuracy. By
implementing the proposed preconditioning scheme the con-
dition number is reduced, and a loss in solution accuracy only
occurs if the tolerance criterion for selecting the degrees of
freedom to constrain is too small. The proposed precondi-
tioning scheme also allows an infinitesimal level set shift for
preventing intersections through a node or an element edge.

Generic solver preconditioners help to reduce the condi-
tion number, but they suffer from robustness issues and their
performance depends on the formulation of the interface con-
dition. The proposed preconditioning scheme is robust and
efficient for solving linear and nonlinear problems. Addition-
ally, the proposed approach performs well for discontinuous
problems and C0-continuous problems with both the stabi-
lized Lagrange and Nitsche methods for enforcing continuity
at the interface.

In this work two diagonal forms of the preconditioning
matrix were studied. Additional approaches for building the
preconditioning matrix can be further explored, including
diagonal and non-diagonal forms. While this paper studied
heat diffusion, fluid flow, and interfacial debonding, the pre-
conditioning scheme is directly applicable to other problem
types. However, as presented in this paper, the proposed
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preconditioning scheme is specific to Heaviside enriched
XFEM. Only 2D problems with static and prescribed moving
interfaces were considered. The extension of the proposed
preconditioning scheme to 3D problems is straight forward
and is discussed in [36].

A formal and comprehensive comparison of the present
preconditioner approach with that of [22] and [2] for C0-
continuous problems, while beyond the scope of this work,
forms an ongoing study. Additionally, the performance of
the preconditioning scheme for problems with dynamically
evolving interfaces will be investigated in future studies.
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Abstract This paper is concerned with the modeling of heterogeneous materi-
als with uncertain inclusion geometry. The eXtended Stochastic Finite Element
Method (X-SFEM) is a recently proposed approach for modeling stochastic partial
differential equations defined on random domains. The X-SFEM combines the de-
terministic eXtended Finite Element Method (XFEM) with a Polynomial Chaos
Expansion (PCE) in the stochastic domain. The X-SFEM has been studied for
random inclusion problems with a C0-continuous solution at the inclusion inter-
face. This work proposes a new formulation of the X-SFEM using the Heaviside
enrichment for modeling problems with discontinuous solutions at the uncertain
inclusion interface. The Heaviside enrichment formulation employs multiple en-
richment levels for each material subdomain which allows more complex inclusion
geometry to be accurately modeled. A PCE is applied in the stochastic domain,
and a random level set function implicitly defines the uncertain interface geom-
etry. The Heaviside enrichment leads to a discontinuous solution in the spatial
and stochastic domains. Adjusting the support of the stochastic approximation
according to the active stochastic subdomain for each degree of freedom is pro-
posed. Numerical examples for heat diffusion and linear elasticity are studied to
illustrate convergence and accuracy of the scheme under spatial and stochastic
refinements. In addition to problems with discontinuous solutions, the Heaviside
enrichment is applicable to problems with C0-continuous solutions by enforcing
continuity at the interface. A higher convergence rate is achieved using the pro-
posed Heaviside enriched X-SFEM for C0-continuous problems when compared to
using a C0-continuous enrichment.
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1 Introduction

Computational methods for the propagation of uncertainties through models gov-
erned by partial differential equations are powerful tools for the prediction of a sys-
tem’s response, model validation, and engineering design. For heterogeneous com-
posite materials, the material layout has uncertainty due to processing techniques.
In order to relate the effective properties to the material layout, the uncertainty
in geometry requires methods that account for the random material interfaces.
This work proposes an approach to model problems with a strong discontinuity
across a random material interface. Examples from this class of problems include
imperfectly bonded interfaces, crack analysis, and the phonon Boltzmann trans-
port model for heat diffusion at the submicron scale. The proposed approach is
also applicable to problems with a weak discontinuity across the random material
interface by enforcing a continuous solution using an interface constraint method
such as the stabilized Lagrange multiplier and Nitsche methods [5, 18]. The pro-
posed approach introduces the Heaviside enrichment function in the eXtended
Stochastic Finite Element Method (X-SFEM) [12], which extends the eXtended
Finite Element Method (XFEM) [10] to the stochastic domain using a Polynomial
Chaos Expansion (PCE) [25] to approximate the degrees of freedom based on the
random parameters characterizing the interface position.

Following the work by Hansbo and Hansbo [4], the Heaviside enriched XFEM
is a deterministic approach for solving problems with discontinuities across an
embedded interface without requiring a mesh which conforms to the interface
geometry. The XFEM formulation in this work implements multiple enrichment
levels to approximate all disconnected regions of the same phase [9, 21]. The use of
additional enrichment levels accurately models neighboring intersected elements
as well as elements intersected more than once. This implementation of the XFEM
is particularly useful for modeling problems with a varying interface geometry, as
mesh regeneration is avoided and robustness is added for more complex interface
configurations.

A Monte Carlo (MC) simulation combined with the XFEM may be utilized to
solve the stochastic problem. In Savvas et al. [14], the homogenization of random
media with varying inclusion geometry is studied using the XFEM coupled with
MC simulation. While the XFEM avoids remeshing for each realization of the in-
clusion geometry, numerous solutions may be required for sampling the varying
inclusion geometry. An alternative is the X-SFEM [11], which requires one solution
of a larger system of equations. The X-SFEM was recently introduced for mod-
eling problems with C0-continuous solutions at random material interfaces. The
spatial domain is discretized by the XFEM and extended to the stochastic domain
by a PCE based on the random parameters characterizing the uncertain interface
geometry. The dimension of the stochastic domain is determined by the finite set
of random parameters chosen to characterize the interface geometry. Each spa-
tial degree of freedom is approximated in the stochastic space using a PCE, and
a Galerkin projection leads to a finite system of equations to be solved for the
expansion coefficients. The Wiener-Askey PCE [25] defines polynomial sets which
are orthogonal with respect to the probability density function of the random pa-
rameters. The application of PCE may lead to exponential convergence rates if the
degrees of freedom vary smoothly with respect to the random parameters. How-
ever, for non-smooth behavior of the degrees of freedom in the stochastic domain,
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the PCE may converge slowly or fail to converge. The X-SFEM was studied for
problems with C0-continuous solutions at the random material interface with var-
ious enrichment functions in [6]. This work proposes a new implementation of the
X-SFEM in order to solve problems with a discontinuous solution at the random
material interface using the Heaviside enrichment function.

Building on the work in [6, 8], a method for extending the Heaviside enriched
XFEM to the stochastic domain using a PCE is proposed. A random level set func-
tion is utilized to implicitly define the interface position, which depends on a set
of random parameters. The Heaviside enrichment is required to model the strong
discontinuity across the material interface, which leads to degrees of freedom that
are discontinuous in the stochastic domain as well as in the spatial domain. Here
a degree of freedom refers to an unknown in the XFEM system of equations. Each
degree of freedom is a function of the random inputs. The discontinuous behavior
in the stochastic domain results from each degree of freedom being nonzero for
only a portion of the stochastic domain. To illustrate the discontinuous behavior
of the degrees of freedom in the stochastic domain, consider the bimaterial bar ex-
ample in Figure 1(a). The two material subdomains are given as D1 and D2, and
the uncertain interface location is defined by r(ξ) where ξ is a vector of random
parameters. Each degree of freedom is nonzero (active) over part of the stochastic
subdomain depending on the variation of the interface. An example of a degree of
freedom (dof) variation for 2 random parameters is shown in Figure 1(b) in which
the active subdomain is a rectangle in the stochastic domain.

x�
1

�
2

L

r(�)

1 2 3 4 5 6

(a)

Change to portrait layout for printing

(b)

Fig. 1 (a) Bar example with an uncertain interface. (b) An active stochastic subdomain for
2 random parameters.

The X-SFEM generally uses a set of polynomial basis defined globally over
the stochastic space for the approximation. Due to the non-smooth behavior and
possibly local behavior of the degrees of freedom in the stochastic domain, such
a global basis is not well suited. This work proposes adjusting the support of the
PCE basis functions for the approximation of each degree of freedom. The support
of the PCE basis functions are adjusted to match the active stochastic subdomain,
e.g., the gray region in Figure 1(b). The adjustment of the PCE basis functions
depends on the characterization of the interface geometry and is determined by the
spatial mesh as well as the random level set function. Adjusting the support of the
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PCE basis functions increases accuracy, and the system remains well-conditioned
for higher approximation orders of the PCE.

The focus is on discontinuous and C0-continuous example problems in heat
diffusion and linear elasticity. While the proposed method is designed to solve
problems with a strong discontinuity, C0-continuous problems are included in order
to compare the performance of the proposed approach with existing methods.
The remainder of the paper is organized as follows: Section 2 defines the model
problem and random level set function. The Heaviside enriched XFEM is presented
in Section 3. The extension of the XFEM to the stochastic domain is described
in Section 4. Four numerical examples are presented in Section 5 to describe and
examine the performance of the proposed method.

2 Model Problems

The focus of this work is solving the model problem depicted in Figure 2 for heat
diffusion and linear elasticity. The model problem contains an inclusion embedded
in a matrix, and the geometry of the inclusion is uncertain. While the model
problem consists of a material with a single random inclusion for simplicity, the
proposed method is applicable to multiple inclusions. The level set method is used
to define the random interface geometry. This section describes the setup and the
governing equations for the model problem.

2.1 Domain Description

The governing equations are solved over the spatial domain D ⊂ Rn, and the
probability space is denoted by (Σ,B, P ). Here, Σ is the set of elementary events, B
is the σ-algebra of events, and P is the probability measure. The random inclusion
geometry is characterized by a finite set of random parameters, ξ : Σ → Ω ⊆ Rd.
The spatial domain is comprised of two non-overlapping material subdomains,
such that D = D1(ξ) ∪ D2(ξ). The material interface has zero thickness and is
defined as Γ (ξ) = D1(ξ) ∩ D2(ξ). The boundary of D is comprised of a Dirichlet
boundary, ∂DD, and a Neumann boundary, ∂DN .

2.2 Random Level Set

The level set method [15] is used to implicitly define the random interface geometry.
The level set method is frequently used in the XFEM to define geometric features
[2, 19, 20, 23]. A random level set function is introduced to define the random
interface geometry for the model problem. The random interface location, Γ (ξ),
is defined by the zero contour of a random level set function φ(x, ξ) : D×Ω → R.
The properties of φ(x, ξ) are given by

φ(x, ξ) < 0 if x ∈ D1(ξ)

φ(x, ξ) > 0 if x ∈ D2(ξ)

φ(x, ξ) = 0 if x ∈ Γ (ξ). (1)
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Fig. 2 Schematic of the model problem with a single random inclusion.

The random level set function is discretized according to the finite element mesh
of D,

φ(x, ξ) =
∑
i∈I

Mi(x)φi(ξ), (2)

where Mi(x) are the nodal basis functions, I is the set of all nodes in the mesh,
and φi(ξ) is the value of the random level set function at node i. For this work, the
basis functions used to interpolate the level set function (Mi(x)) are the same as
the basis functions used to interpolate the solution (Ni(x), introduced in Section
3.2).

In this work, the characterization of the random interface geometry is assumed
to be known. For realistic problems, the random interface characterization often
requires a collection of measurement data for numerous outcomes of the interface
geometry [16, 17]. The measurement data may be collected from various experi-
mental approaches, such as optical images and micrographs. The approach used
in this work to define the random level set function is by computing φi(ξ) as re-
alizations of the interface geometry. An example of this approach uses the signed
distance function, defined as

φ(xi, ξ) = ±min ‖xi − xΓ (ξ)‖ (3)

where xΓ (ξ) is the interface location, xi is the spatial coordinate at node i, and
‖ · ‖ denotes the L2-distance. With this approach, the random level set function is
constructed by defining the interface location as a function of ξ. Another example
of defining the random level set function is discussed in Section 5.4.

2.3 Heat Diffusion with Random Geometry

The stationary heat diffusion equation is solved for a single inclusion with random
interface geometry. The model heat diffusion problem consists of finding the ran-
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dom temperature field, u(x, ξ), such that the following holds almost surely in Ω
for phase i = 1, 2,

−∇ · (k∇ui) = f in Di(ξ)
(k∇ui) · ni = qT on ∂Di ∩ ∂DN

ui = uT on ∂Di ∩ ∂DD, (4)

where k is the thermal conductivity of an isotropic material, f is the volumetric
heat source, and ui denotes the restriction of u to Di. A temperature uT is specified
on ∂DD, and a heat flux qT is specified on ∂DN with an outward unit normal to
Di denoted by ni. The conductivity is defined as

k(x, ξ) =

{
0 < kmin < k1 < kmax <∞ if x ∈ D1(ξ)
0 < kmin < k2 < kmax <∞ if x ∈ D2(ξ)

(5)

with constants k1 and k2. For well-posedness, k1 and k2 are bounded by a minimum
and maximum value. A thermal resistance is assumed to exist at the interface,
which may be due to imperfect contact or a thin coating, leading to a discontinuous
solution. The flux at the interface for the discontinuous solution is defined as

q1 = α(u1 − u2) on Γ−(ξ)

q2 = −α(u1 − u2) on Γ+(ξ), (6)

where q1 and q2 are the heat flux at the interface in the phase 1 and phase 2
domains, respectively, and α is the unit thermal conductance at the interface. The
phase 1 side of the interface is denoted by Γ−, and the phase 2 side of the interface
is denoted by Γ+. For imperfect contact, α represents the conduction across the
interface with α = 0 representing no conduction. For a thin layer, α = kΓ

tΓ
, where

kΓ and tΓ are the conductivity and thickness of the interface layer. The solution is
C0-continuous for perfect thermal contact at the interface. In this case, continuity
of the solution and flux across the random interface is enforced by the following
interface conditions:

[[u]] = u1 − u2 = 0 on Γ (ξ)

k1∇u1 · n1 + k2∇u2 · n2 = 0 on Γ (ξ). (7)

2.4 Linear Elasticity with Random Geometry

The model linear elasticity problem consists of finding the random displacement
field, u(x, ξ), such that the following holds almost surely in Ω for i = 1, 2,

−∇ · (σi) = b in Di(ξ)
σi · ni = td on ∂Di ∩ ∂DN

ui = ud on ∂Di ∩ ∂DD (8)
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where σi is the stress tensor and ui is the displacement solution restricted to Di.
The applied body forces are denoted by b, and prescribed displacements ud and
tractions td are imposed on ∂DD and ∂DN , respectively. The constitutive relation
for a linear elastic material is defined as

σi = Ci : ε(ui) in Di(ξ), (9)

where Ci is the elasticity tensor and ε is the strain tensor. Assuming small strains
and displacements, the kinematics model is defined as

ε =
1

2
(∇ui +∇uTi ). (10)

A crack or other imperfect bond at the interface leads to a discontinuous displace-
ment. A zero normal stress at the crack interface is assumed, defined as

σ1 · n1 = 0 on Γ−(ξ)

σ2 · n2 = 0 on Γ+(ξ). (11)

For a perfect bond at the interface, which gives a C0-continuous solution, conti-
nuity of the displacement and normal stress across the random interface require

[[u]] = u1 − u2 = 0 on Γ (ξ)

σ1 · n1 + σ2 · n2 = 0 on Γ (ξ). (12)

3 Heaviside Enriched X-FEM

The extended finite element [10, 19] uses an enrichment function to locally capture
the non-smooth solution at the interface without requiring a mesh which conforms
to Γ . Following the work by Hansbo and Hansbo [4] and Terada [21], a generalized
Heaviside enrichment strategy is adopted which employs multiple enrichment levels
[7–9]. The generalized Heaviside enrichment provides great flexibility in solving a
broad range of partial differential equations with multiple phases for any choice
of nodal basis functions. An advantage to using the Heaviside enrichment is that
there are no issues with blending elements, which may exist for C0-continuous
enrichments. Also, neighboring intersected elements and elements intersected more
than once can be modeled accurately using the generalized Heaviside enrichment
strategy. This section defines the weak form of the governing equations (4)-(8) and
the generalized Heaviside enrichment approach for solving the deterministic forms
of the model problem.

3.1 Weak Form

The weak form of the governing equations for heat diffusion and linear elasticity
are constructed by multiplying (4) and (8) by a set of admissible test functions and
integrating over D. The space V = H1(D) is the Hilbert space consisting of scalar
functions with square integrable first derivatives and V0 = {v ∈ V : v|∂DD = 0}.
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Let u ∈ V be the solution and v ∈ V0 be an admissible test function. The weak
form of the deterministic heat diffusion problem is stated as: Find u ∈ V such that
u = ut on ∂DD and∫

D
(κ∇u) · ∇vdx−

∫
D
fvdx−

∫
∂DN

qtvds+RΓ = 0 ∀v ∈ V0, (13)

where s denotes the boundary of D and RΓ includes the interface conditions in
(6) for the discontinuous problem. For the continuous problem, RΓ = 0. The
space W = H1(D) is the Hilbert space consisting of vector functions with square
integrable first derivatives and W0 = {w ∈ W : w|∂DD = 0}. Let u ∈ W be the
displacement and w ∈ W0 be an admissible test function. The weak form of the
deterministic elasticity problem is stated as: Find u ∈ W such that u = ud on
∂DD and

∫
D
σ : ε(w)dx−

∫
D
b ·wdx−

∫
∂DN

td ·wds+RΓ = 0 ∀w ∈W0, (14)

where RΓ is the enforcement of the interface conditions in (11) for the discontin-
uous problem.

The continuity equations in (7) and (12) were used to derive the weak form
for both model problems. The interface conditions are included in RΓ for the
discontinuous problem. For discontinuous problems, the flux or normal stress at
the interface are applied by multiplying (6) or (11) by the test functions and
integrating along the interface.

3.2 Approximation

Consider a finite element mesh, Th, for D consisting of elements with edges that
do not necessarily coincide with Γ . For a two phase problem with one level set
function, an intersected element has a region corresponding to each of the two
phases. The support of a nodal basis function includes multiple elements. If the
support of a nodal basis function is intersected by the interface, there may be re-
gions of the same phase which are not connected. A Heaviside enrichment function
is implemented in the XFEM formulation, such that each disconnected region of
the same phase is approximated by an independent set of nodal basis functions.
The space V and W are comprised of the spaces for all disconnected regions and
written as V = {v : vi ∈ H1(D)} and W = {w : wi ∈ H1(D)}. Here, the subscript
i represents the set of disconnected regions for each phase. The approximation of
u(x), denoted by uh(x), for two phases is defined as

uh(x) =
M∑
m=1

(
H(−φ(x))

∑
i∈I

Ni(x)u
(1)
i,m +H(φ(x))

∑
i∈I

Ni(x)u
(2)
i,m

)
, (15)

where I is the set of all nodes in Th, Ni(x) is the nodal basis function, M is the

maximum number of enrichment levels, and u
(q)
i,m is the degree of freedom at node

i for phase q ∈ {1, 2}. The Heaviside function is given by
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H(z) =

{
1 z > 0
0 z ≤ 0

. (16)

In this formulation, a single basis function, Ni(x), is used at each node. Ad-
ditional nodal degrees of freedom are added for each phase and enrichment level.
Although (15) is written using the maximum possible number of enrichment levels,
the specific number of enrichment levels at each node is determined by the spatial
mesh and a priori knowledge of the interface location. The number of enrichment
levels required depends on the number of disconnected regions of the same phase
included in the support of Ni(x). The approximation of u(x) in (15) satisfies the
partition of unity. Further details of this enrichment strategy are provided in [7, 9].
A key advantage of employing multiple enrichment levels using the Heaviside en-
richment is that accurate solutions can be determined for neighboring intersected
elements and elements intersected more than once using a single level set function,
adding robustness for problems involving moving or changing interface geometry.
For C0-continuous problems, an interface constraint method is required for the
Heaviside enrichment [1, 5, 18] to enforce the solution continuity across the inter-
face in (7) and (12). Two common interface constraint formulations for enforcing
continuity across material interfaces in the XFEM are the stabilized Lagrange and
Nitsche methods, which are defined in [7, 9] for application to heat diffusion and
linear elasticity.

4 Extended Stochastic FEM

The extended stochastic FEM (X-SFEM) [13] extends the XFEM to the stochastic
framework using a PCE to model problems defined on random domains. The X-
SFEM for C0-continuous problems with random inclusions was introduced in [11]
with a proposed enrichment function. The X-SFEM was studied for heat diffusion
with a single random inclusion [6], specifically the accuracy and the smoothness
of the degrees of freedom as a function of the random variables using various
C0-continuous enrichment functions. Requirements for a successful enrichment
function were presented as well as a partitioning strategy for accurate integration
in the probability domain. Here, the X-SFEM is studied for discontinuous problems
with random inclusions by extending the Heaviside enriched formulation described
in Section 3 to the stochastic domain using a PCE. The PCE approximates the
variation of the spatial degrees of freedom with respect to the random parameters
ξ. In this work, a degree of freedom refers to the unknowns in the XFEM system
of equations, and stochastic or expansion coefficients refer to the unknowns in
the X-SFEM system of equations as described in Section 4.3. A PCE with global
basis is well suited for a C0-continuous enrichment function when the variation of
the degrees of freedom is smooth and defined over the entire stochastic domain.
However, a PCE with global basis is not well suited when using the Heaviside
enrichment function in the X-SFEM. For the Heaviside enrichment, each degree of
freedom is discontinuous as it is defined only on a subdomain of Ω. This subdomain
is referred to as the active stochastic subdomain. Instead of a PCE with global
support in the stochastic domain, adjusting the support of the PCE basis functions
to account for the variation in the active stochastic subdomains is proposed. This
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section defines the active stochastic subdomains, adjustment of the PCE basis
functions, and construction of the system of equations.

4.1 Active Stochastic Subdomains

The active stochastic subdomain for each degree of freedom, denoted as Ω
(q)
i,m ⊆ Ω,

defines the stochastic subdomain where the degree of freedom u
(q)
i,m is nonzero.

The active stochastic subdomain for each degree of freedom is determined by the
intersection of φ(ξ) = 0 and the support of the nodal basis function in the XFEM
approximation. For the linear basis functions used in this work, φj(ξ) = 0 is
computed for the nodes of the elements sharing node i to determine the active
stochastic subdomains. Each degree of freedom at node i is active for one or more
of the regions created by φj(ξ) = 0. In general, each degree of freedom is active
over a single connected subdomain. However, a degree of freedom may be active
over disconnected regions depending on the discretization. In this case, additional
enrichment levels are added such that each degree of freedom is active over a single
connected subdomain.

The variation of the degrees of freedom is smooth over the active stochas-
tic subdomain for which a polynomial approximation is well suited. As will be
described, a PCE is constructed on the active stochastic subdomain using polyno-

mial functions. For d = 1 and when ξ : Ω → [−1, 1], Ω
(q)
i,m is defined by the interval

[a, b] ⊆ [−1, 1]. For d > 1, the active stochastic subdomain is approximated by a

hyperrectangle, Ω̂
(q)
i,m, and the product of one-dimensional polynomials are used to

construct the PCE on Ω̂
(q)
i,m. A minimum bounding rectangle approximates the ac-

tive stochastic subdomain, such that Ω̂
(q)
i,m = [aj , bj ] ⊆ [−1, 1]d where j = 1, . . . , d.

For d = 1, Ω̂
(q)
i,m = Ω

(q)
i,m. An example illustration of an approximate active stochas-

tic subdomain for d = 1 and d = 2 is depicted in Figure 3(a)-(b). As discussed in

the next section, a rotated Ω̂
(q)
i,m may be required to closely approximate the area

of the active stochastic subdomain, which is depicted in Figure 3(c).

The simple bar example is used to illustrate the active stochastic subdomains
for d = 1. The bar depicted in Figure 1(a) has length L = 1 and is modeled
using 5 elements. Let the interface position depend on one random parameter
r = 0.2ξ + 0.5, where ξ is distributed uniformly over [−1, 1], i.e., ξ ∼ U [−1, 1].
The random level set function is given as φ(ξ) = x − r(ξ). The active stochastic
subdomain for the degree of freedom interpolating the phase 2 solution at node

3, denoted Ω
(2)
3,1, is defined by the interval [−1, 0.5], and Ω

(1)
4,1 is defined by the

interval [−0.5, 1]. The intersection points ξ = 0.5 and ξ = −0.5 are computed from
φ4(ξ) = 0 and φ3(ξ) = 0, respectively. Note that the other two active stochastic

subdomains for nodes 3 and 4, Ω
(1)
3,1 and Ω

(2)
4,1 are defined by the interval [−1, 1].

The example in Section 5.1 further illustrates the active subdomains for d = 1 and
depicts the variation of the degrees of freedom.
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Fig. 3 Active stochastic subdomain for (a) d = 1, (b) d = 2, and (c) rotated in d = 2.

4.2 Approximation

In the X-SFEM, the Heaviside enrichment function and the degrees of freedom in
(15) are functions of the random variables ξ. For the Heaviside enriched formula-
tion, the X-SFEM approximation of u(x, ξ) is defined as

uh(x, ξ) =

M∑
m=1

(
H(−φ(x, ξ))

∑
i∈I

Ni(x)u
(1)
i,m(ξ)I

(1)
i,m(ξ)

+H(φ(x, ξ))
∑
i∈I

Ni(x)u
(2)
i,m(ξ)I

(2)
i,m(ξ)

)
, (17)

where the indicator function I restricts the approximation of each degree of free-

dom u
(q)
i,m(ξ) to the active stochastic subdomain Ω̂

(q)
i,m. The indicator function is

defined as

I
(q)
i,m(ξ) =

{
1 if ξ ∈ Ω̂(q)

i,m

0 otherwise
. (18)

Each degree of freedom, u
(q)
i,m(ξ), is approximated in the stochastic space using

a PCE of order p. A compact notation is introduced to define the set of degrees
of freedom as un(ξ), where n is an index to the set {i,m, q}which consists of all
nodes, enrichment levels, and phases. The stochastic approximation for a degree
of freedom is defined by

un(ξ) =

MPC∑
j=1

Lnj (ξ)anj , (19)
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where anj are the stochastic coefficients to be determined and Lnj are polynomials

defined on Ω̂n. For random variables with the independent uniform distributions
considered in this work, multi-dimensional Legendre polynomials form an orthog-
onal basis with respect to the uniform measure, such that

〈Li, Lj〉 =

∫
[−1,1]d

Li(ξ)Lj(ξ)P (ξ)dξ = 〈L2
i 〉δij , (20)

where δij denotes the Kronecker delta and 〈·〉 denotes the mathematical expecta-
tion operator. The uniform measure is given as P (ξ) = (1

2 )dI[−1,1]d , where I[−1,1]d

is the indicator set of the hypercube [−1, 1]d with d random variables. The Legen-
dre polynomials in (20) are the standard basis defined on Ω. The polynomials Lnj
in the PCE (19) are defined on Ω̂n, and are constructed by transforming the stan-
dard Legendre polynomials. While random variables with uniform distributions are
considered in this work, local orthogonal polynomial bases for other distributions
may be constructed numerically [22].

The proposed approach to construct Lnj follows the multi-element generalized

PCE [22], in which a single element in Ω is defined by Ω̂n. The stochastic ap-
proximation is restricted to a single element to minimize the number of expansion
coefficients to be determined by the system of equations. The Lj are scaled by a
linear transformation from Ω to Ω̂n and normalized to construct Lnj . The uniform

random parameter ξ is defined on [−1, 1], and ξ̃ is a uniform random parameter
defined on [a, b]. For d = 1, constructing the Lnj on the active stochastic subdomain
uses the linear transformation

ξ̃i =
bi − ai

2
ξi +

bi + ai
2

for i = 1, . . . , d. (21)

Since 〈Li, Lj〉 = 1
2i+1δij , the normalization constant is given as

√
2i+ 1. The

transformed and normalized polynomials are defined on Ω̂n by

Lnj (ξ̃) =
√

2j + 1Lj(ξ(ξ̃)), (22)

and the Lnj are zero outside of Ω̂n. For d > 1, the multi-dimensional set of poly-
nomials is constructed by the tensor product of one-dimensional polynomials with
total order up to p [24]. The number of stochastic coefficients required in (19) is
defined as

MPC =
(p+ d)!

p!d!
. (23)

A comparison of the one-dimensional Legendre polynomials on [−1, 1] and
the transformed and normalized Legendre polynomials on [a, b] = [−0.75, 0] is
shown in Figure 4 for p = 3. The transformed basis, Lnj , is computed for each
degree of freedom and avoids poorly conditioned systems resulting from small
active stochastic subdomains.

Additionally for d > 1, the minimum bounding hyperrectangle and the active
stochastic subdomain should have similar volumes. Otherwise an ill-conditioned
system may result. Here, the focus is on d = 2, in which a minimum bounding
rectangle is defined for the active stochastic subdomain. If the active stochastic
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Fig. 4 (a) Legendre polynomials on [−1, 1], and (b) transformed and normalized Legendre
polynomials on [−0.75, 0].

subdomain for d = 2 is a sliver, as depicted in Figure 5(a), the area of the mini-
mum bounding rectangle does not closely match the area of the active stochastic
subdomain. A rotated coordinate system is required in order for the bounding
rectangle to closely approximate the active stochastic subdomain. The rotation
for d = 2 is defined by the angle α, and the rotated coordinate system is ξ′ = Tξ.
With α specified as the angle from the positive ξ1 axis to the longest bounding
box edge, the rotation to the reference coordinate system is defined as

T =

[
cos(−α) − sin(−α)
sin(−α) cos(−α)

]
. (24)
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Fig. 5 (a) Example sliver configuration of an active stochastic subdomain for d = 2, and (b)
the rotated coordinate system for defining the minimum bounding rectangle.

The rotated coordinate system for the example sliver configuration is shown
in Figure 5(b). In this case, the minimum bounding rectangle matches the active
stochastic subdomain using the rotated coordinate system. The transformed basis,
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Lnj , is computed using the rotated coordinate system. While the rotation is needed
for defining the active stochastic subdomain for some degrees of freedom, ξ is used
throughout the rest of the paper without reference to ξ′. The rotated coordinate
system is applied for the numerical examples in this work when the ratio of the
minimum bounding rectangle area to the active area is greater than 2 for d = 2.

The uniform distribution of ξ is not preserved under a rotation, therefore the
Legendre basis in ξ′ is not orthogonal with respect to the measure of ξ′ on Ω̂n

when the rotation is utilized. However, it is straightforward to see that this basis
is orthogonal with respect to the uniform density over Ω̂n. In the subsequent
formulations, the expectations are therefore taken with respect to the uniform
density Ω̂n when a coordinate rotation is performed. Additionally, the rotation
may lead to an active stochastic subdomain which extends beyond Ω, as illustrated
in Figure 3(c). Since Ω̂n ⊆ Ω, the Lnj are computed only within Ω.

Finally, active stochastic subdomains with small areas may lead to an ill-
conditioned system. In order to avoid the ill-conditioning, the area of the active
stochastic subdomain (AΩ) is required to be greater than a minimum value. A
tolerance is implemented such that the coefficients of the PCE for degrees of free-
dom with AΩ < Atol are constrained to zero. By doing so, the variation of the
degree of freedom in Ω is neglected. A tolerance value of Atol = 10−6 was im-
plemented for the numerical examples in this work, for which degrees of freedom
were constrained only in Example 3.

4.3 System of Equations

In this section, the system of equations that results from the spatial and stochastic
discretizations is described. The semi-discretized system of equations defined in
(13) and (14) can be written in matrix form as

K(ξ)u(ξ)− f(ξ) = 0, (25)

where K is the conduction or stiffness matrix, f is the load vector, and u repre-
sents the vector of nodal degrees of freedom. The number of degrees of freedom
is denoted by NFE , and the dependency on the random inclusion geometry is in-
cluded by the random vector ξ. Following the approach outlined in [6], the system
of equations is constructed to solve for the expansion coefficients in (19). However,
the transformed polynomial basis Lnj is specific to each spatial degree of freedom in
this work. The polynomial expansion of each degree of freedom (19) is introduced
into (25), and the Galerkin projection of the residual leads to a coupled system of
equations for the vector of coefficients, aj , i.e.,

MPC∑
k=1

〈Kij(·)Lik(·)Ljl (·)〉ak − 〈fi(·)L
i
l(·)〉 = 0, l = 1, . . . ,MPC . (26)

The (MPC ·NFE) × (MPC ·NFE) system of equations is written in compact
form as

Ksâ− fs = 0, (27)
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where Ks and fs are assembled from each spatial element integrated over Ω. The
vector â collects all of the expansion coefficients for the vector u(ξ). Each lth
sub-vector component of the element vector fes is defined as

(fes )l = 〈fei (·)Lil(·)〉 for l = 1, . . . ,MPC , (28)

and each (k, l) block of the element matrix Ke
s is defined as

(Ke
s )kl = 〈Ke

ij(·)Lik(·)Ljl (·)〉 for k, l = 1, . . . ,MPC . (29)

Here, (i, j) are indices for the degrees of freedom belonging to the nodes of element
e in the finite element mesh, and (i, j) are not summed. The polynomial basis Li

is defined on Ω̂i.

The element quantities Ke
s and fes are computed by integrating over the spa-

tial and stochastic domains. The spatial domain is partitioned for an intersected
element for accurate integration over D, which is standard practice in the XFEM.
The partition is constructed to align with the interface, as described in [2, 7].
The integration over Ω also requires a partition for accuracy, since Ke(ξ) and
fe(ξ) vary piecewise smoothly with ξ. Partitioning of Ω is also standard practice
for the X-SFEM. However, the proposed approach for using the Heaviside enrich-
ment requires a specific partitioning technique, which is described as follows. The
domain in which the response varies smoothly is bounded by the intersection of
φi(ξ) = 0 with the support of the basis functions. Therefore, φi(ξ) = 0 for the
degrees of freedom at the nodes of the element and its neighbors are used to define
the stochastic partition. Additionally, Ω̂i is considered in the construction of the
stochastic partition, as it defines the nonzero subdomain for the PCE. The element
stochastic partition is constructed using the union of φi(ξ) = 0 for the nodes of
the element and its neighbors, as well as Ω̂i for the nodes of the element. Each ele-
ment stochastic partition is potentially different, as well as each Ω̂i, which leads to
increased computational costs. However, constructing the element stochastic par-
tition and performing the element integration are well suited for efficient parallel
processing.

In this work, a triangulation is used for the partition of the 2D spatial domain.
A linear interpolation of the level set field is used in this work. For integration in
the spatial domain, the triangular partition of an intersected element aligns with
the interface. Therefore the numerical integration in the spatial domain is exact for
a properly chosen integration rule determined by the weak form of the governing
equation. For d = 1, the partition of the stochastic domain is constructed using
points according to φi(ξ) = 0 where i is the set of nodes of the element and its
neighbors. For d = 2, the stochastic partition is constructed using a triangulation
of the bounding rectangle edges of the active stochastic subdomains for the ele-
ment nodes as well as φi(ξ) = 0, where i is again the set of nodes of the element
and its neighbors. An example partition of the stochastic domain is illustrated in
Figure 6(a) for d = 1 with 4 points for φi(ξ) = 0. Figure 6(b) depicts a triangu-
lated stochastic partition for d = 2 with 4 edges for φi(ξ) = 0 and 2 minimum
bounding rectangles for Ω̂n. For integration in the stochastic domain, a local error
is introduced from solving φi(ξ) = 0 for d = 1 and d = 2. Additionally, the zero
level set curves are assumed to be linear for d = 2. Note that the integration rule
for the stochastic domain depends on the chosen order of the PCE.
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Fig. 6 Example stochastic partition for (a) d = 1 and (b) d = 2. The triangulation for d = 2
is denoted by the dashed red lines.

5 Numerical Examples

Four numerical examples are presented to study the convergence and accuracy of
the proposed Heaviside enriched X-SFEM. The first two numerical examples have
one random parameter and an analytical solution for investigating convergence of
the method. The inclusion geometry in the third and fourth numerical examples
is characterized by two random parameters in order to demonstrate the proposed
method for problems with a two-dimensional stochastic domain. Example problems
with continuous and discontinuous solutions are studied in this section. Solving
problems with continuous solutions using the Heaviside enriched X-SFEM allows
a comparison with the X-SFEM using a C0-continuous enrichment [11]. The first
three examples have C0-continuous solutions while the solution is discontinuous in
the fourth numerical example. The C0-continuous enrichment used in the following
examples was proposed in [11].

5.1 Example 1: Diffusion in a Two-Material Bar

The first numerical example solves the heat diffusion problem (4) for the two-
material bar shown in Figure 7. The bar has length L = 20 with a centered
inclusion of length 2r(ξ). The material interface is described by one random pa-
rameter, such that r(ξ) = 5 + 2.5ξ and ξ has a uniform distribution U(−1, 1). The
inclusion geometry for r = 5 is shaded in Figure 7, and the dashed lines repre-
sent the variation of the inclusion geometry. The material conductivity in D1 and
D2 is k1 = 2 and k2 = 20, respectively. The temperature at the left boundary
is specified as u1 = 0, and the temperature at the right boundary is specified
as u2 = 100. While the problem is one-dimensional in the physical domain, this
example is modeled using 20 quadrilateral elements. The solution in the spatial
domain for a specific value of ξ is piecewise constant over three subdomains. The
chosen spatial discretization reproduces the exact solution and contributes zero
error to the approximation.

Two studies are performed for this example. First, the degree of freedom ap-
proximation as a function of ξ is examined and compared to solving multiple
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XFEM solutions for different interface positions. Second, the convergence of the
solution error with respect to the stochastic approximation order p is determined.
The stabilized Lagrange and Nitsche methods with a constraint factor of k1 + k2
are used to enforce solution continuity at Γ . The solutions using these methods
were almost identical for the example problem, and the solution using the stabi-
lized Lagrange method is shown. This example problem was studied in [6] using
the X-SFEM with the C0-continuous enrichment.
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Fig. 7 Problem description for Example 1, shown with mesh size h = 1.

In order to show the variation of the degrees of freedom as a function of ξ, the
deterministic solution is solved for ξ = −1 to ξ = 1 in steps of ∆ξ = 0.01. The
deterministic solution is computed using the XFEM by solving multiple problems
for various interface positions defined by r(ξ). It is noted that a preconditioner
is required in the XFEM for varying interface positions in order to avoid an ill-
conditioned system of equations due to possible element intersections with a small
ratio of volumes on either side of the interface [7]. A preconditioner was not used
in the X-SFEM. The variation of the degrees of freedom for the node located at
x = (5, 0) are shown in Figure 8. The X-SFEM approximation for p = 1 is shown
for comparison. The support of the PCE basis for the stochastic approximation is
defined by the active subdomain. Note that the interface constraint formulation
couples the phase 1 and 2 degrees of freedom. Increasing the order of the PCE
reduces the error in the X-SFEM solution, as shown in the second part of this
numerical example.

The accuracy of the X-SFEM solution is measured by the relative error defined
by

e =
‖u− û‖L2(Ω;L2(D))

‖u‖L2(Ω;L2(D))
, (30)

where u denotes the analytical solution and û denotes the X-SFEM solution. The
relative error is computed for each stochastic approximation order, p, and the
convergence of the error is shown in Figure 9. The error convergence for the pro-
posed Heaviside enriched X-SFEM is compared with the X-SFEM using the C0-
continuous enrichment. While the error for the Heaviside enriched X-SFEM is
higher, the convergence rate for both approaches is the same. The difference in
the magnitude of the error occurs because the C0-continuous enrichment function
is piecewise linear in ξ while the Heaviside enrichment is piecewise constant.
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Fig. 8 The (a) phase 1 and (b) phase 2 degree of freedom values as a function of ξ for the
node located at x = (5, 0) using the XFEM and X-SFEM.
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Fig. 9 Convergence of the relative error for the X-SFEM with the C0 and Heaviside enrich-
ment.

5.2 Example 2: Linear Elastic Bimaterial Plate

The second numerical example solves the linear elasticity problem (8) for the
circular inclusion shown in Figure 10. A circular plate of radius b = 2 has a centered
circular inclusion of radius r. The radius of the inclusion is determined by a single
random parameter with a uniform distribution U(−1, 1). The inclusion radius is
given by r = 1.26 + 0.54ξ. The elastic modulus and Poisson’s ratio of the plate are
E1 = 10 and ν1 = 0.3. The elastic modulus and Poisson’s ratio of the inclusion are
given by E2 = 1, ν2 = 0.25. A radial displacement is prescribed at the boundary
of the plate, such that ud = x. The stabilized Lagrange method [9] is used to
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enforce continuity at the interface with a constraint factor γ = 100(E1 +E2). This
problem is studied using the proposed Heaviside enrichment in X-SFEM as well
as the C0-continuous enrichment proposed in [11].
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Fig. 10 Problem description for Example 2, shown with mesh size h = 0.1.

Two studies are performed for this example. First, the behavior of the degrees
of freedom in the stochastic domain is compared using the C0-continuous and
Heaviside enrichment function for a deterministic sweep. The second study exam-
ines the accuracy of the X-SFEM solution and compares the convergence for the
Heaviside and C0-continuous enrichment functions.

As in the first example, the XFEM solution is determined for numerous values
of ξ in order to examine the behavior of the degrees of freedom in the stochastic
domain. The deterministic problem is solved for ξ = −1 to ξ = 1 with steps of
∆ξ = 0.01. The degrees of freedom for the x-displacement at x = (0.9, 0) is shown
in Figures 11 and 12 using the C0-continuous and Heaviside enrichment functions,
respectively. As discussed in [6] and shown here, the variation of the degrees of
freedom using the C0-continuous enrichment is not smooth with respect to ξ. The
peaks correspond to the intersection of the interface with a node, therefore more
peaks occur as the spatial mesh is refined. While some improvement in smoothness
occurs with spatial mesh refinement, a smooth behavior of the degrees of freedom
depends on a converged spatial mesh for the C0-continuous enrichment. Using the
Heaviside enrichment, the behavior of the degrees of freedom is piecewise smooth
in the stochastic domain for any spatial mesh size, as depicted in Figure 12 for
three spatial mesh sizes. The value of ξ at which the degree of freedom becomes
active changes with mesh size. A second level degree of freedom exists at this node
for phase 2 using the Heaviside enrichment, which is due to disconnected regions
of phase 2 occurring for −0.667 ≤ ξ ≤ −0.656). The additional degree of freedom
varies smoothly over this small active stochastic subdomain and is zero elsewhere.
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A description of why additional enrichment levels may be required for the same
phase is included in [7].
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Fig. 11 (a) The regular and (b) enriched degree of freedom using the C0 enrichment function
for the x-displacement at x = (0.9, 0) as a function of ξ with spatial mesh refinement.
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Fig. 12 The level 1 degrees of freedom for (a) phase 1 and (b) phase 2 using the Heaviside
enrichment function for the x-displacement at x = (0.9, 0) as a function of ξ with spatial mesh
refinement.

The analytical solution [19] is used to compute the relative error (30) in the
X-SFEM solution. A comparison of the solution error using the C0-continuous
and Heaviside enrichment functions is shown in Figure 13 for three spatial mesh
sizes. A higher convergence rate is achieved using the Heaviside enrichment. The
spatial error dominates as each curve flattens as p is increased using the Heaviside
enrichment.
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Fig. 13 Error convergence using the X-SFEM with respect to p for Example 2. Solid and
dashed lines represent the Heaviside and C0-continuous enrichment functions, respectively.

5.3 Example 3: Two Parameter Material Inclusion

The third numerical example studies the proposed Heaviside enriched X-SFEM
for an inclusion geometry defined by two random parameters, resulting in a two-
dimensional stochastic domain. The example problem solves the heat diffusion
problem (4) for the random material inclusion with d = 2 depicted in Figure
14. This problem was presented in [6] using a C0 enrichment function. A square
domain with L = 20 has a random inclusion with radius r(θ, ξ) defined by two
random parameters with independent uniform distributions U(−1, 1). The thermal
conductivity of D1 and D2 are k1 = 2 and k2 = 20, respectively. The stabilized
Lagrange method is used for enforcing continuity at the interface with a constraint
factor of γS = k1 + k2. The temperature on the left and right side is specified as
uT = 0 and uT = 100. A tolerance of Atol = 10−6 is used for constraining to
zero the coefficients of the PCE for degrees of freedom with small active stochastic
subdomains. The radius of the inclusion is given by

r(θ, ξ) = r̄ + σ
2∑
k=1

1

k
ξk

[
cos(k2θ) + sin(k2θ)

]
, (31)

where r̄ = 4 and σ = 1. The angle θ is measured counterclockwise from the positive
x-axis.

The convergence of the X-SFEM solution with spatial and stochastic refine-
ment is studied. Since an analytical solution does not exist for this problem, the
expectation of the solution is computed and compared with a reference solution.
The expectation of the X-SFEM solution is defined by

‖u‖2E =

〈∫
D

(k∇u)T∇udx
〉

. (32)

The Monte Carlo (MC) reference solution is computed from numerous XFEM so-
lutions using a random sampling of ξ. A least-squares polynomial chaos regression
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Fig. 14 Problem description for Example 3, shown with mesh size h = 1.

[3] was used to determine the reference energy norm using the XFEM for the
interface geometry generated by 50, 000 random samples of ξ with 4 mesh sizes
(h = {1, 0.5, 0.25, 0.125}). For h = 0.125, which was the smallest mesh size used
for a MC reference solution, the mean energy norm of the reference solution is
157.523 with a 95% confidence interval of ±0.00402. The comparison of the X-
SFEM energy norm and the reference solution is shown in Figure 15 for 3 spatial
mesh sizes (h = {1, 0.5, 0.25}). For each spatial mesh size, the Heaviside enriched
X-SFEM solution converges quickly to the reference solution as the order of the
PCE is increased. A higher convergence rate for each spatial mesh size is achieved
when compared to the C0-continuous enrichment functions explored in [6]. The
stochastic approximation converges for order p = 2. Additionally, convergence to
the reference solution is seen with spatial mesh refinement.
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kûkE
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Fig. 15 Energy norm of the approximate solution for Example 3. The X-SFEM approx-
imation and reference solution are represented by solid and dashed lines, respectively, for
h = {1, 0.5, 0.25}.
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5.4 Example 4: Ellipse

The Heaviside enriched X-SFEM for a problem with a discontinuous solution across
the random material interface with a two-dimensional stochastic domain is stud-
ied. The fourth numerical example solves the heat diffusion problem (4) for a
material with an ellipsoidal inclusion shown in Figure 16. The inclusion geometry
is characterized by two random parameters, and the solution at the interface is
discontinuous due to a thin interface layer with a thermal conductance of α = 10.
The flux at the interface is defined according to (6). The thermal conductivity of
D1 and D2 are k1 = 2 and k2 = 20, respectively. The temperature on the left
and right side of the domain is specified as uT = 0 and uT = 100. The random
inclusion geometry is defined by the implicit representation of an ellipse and two
random parameters with independent uniform distributions U(−1, 1). Using the
equation of an ellipse, the level set function is defined as

φ(x, ξ) = r2 − a(ξ1)x21 − b(ξ2)x22. (33)

where r = 5 and a(ξ1) = 1 + 0.5ξ1 and b(ξ2) = 1 + 0.5ξ2. Using this definition
instead of the signed distance function, the level set function is linear with respect
to ξ. As a consequence, the partition for stochastic integration exactly aligns with
φi(ξ).
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x

y

�
2

�
1

Fig. 16 Problem description for Example 4, shown with mesh size h = 1.

The convergence of the Heaviside enriched X-SFEM solution with increasing
p is studied using a reference solution. The reference solution was computed with
a least-squares polynomial chaos regression using the XFEM solutions for 50, 000
samples of ξ with 4 spatial mesh sizes (h = {1, 0.5, 0.25, 0.125}). The mean energy
norm for the XFEM reference for h = 0.125 is 164.355 with a 95% confidence
interval of ±0.0606. The mean energy norm of the X-SFEM solution (32) is com-
pared with the reference solution in Figure 17 for the three spatial mesh sizes of
(h = {1, 0.5, 0.25}. The additional mesh size of h = 0.125 was included for the
XFEM reference solution to show convergence. The X-SFEM energy norm con-
verges quickly. Similar to Example 3, the stochastic approximation converges at
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approximately p = 2. However, the X-SFEM solution does not converge to the
corresponding reference solution for each spatial mesh size. When compared with
Example 3, the reference energy norm has a larger variability as indicated by the
confidence interval. The spatial error is dominating for the coarser mesh sizes of
h = 1 and h = 0.5 with p > 2. A certain spatial resolution is required for con-
vergence with a low order of the stochastic approximation. A similar requirement
was identified in [6] using the C0-continuous enrichment function for continuous
problems.
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h=0.125

Fig. 17 Energy norm of the approximate solution for Example 4. The X-SFEM approx-
imation and reference solution are represented by solid and dashed lines, respectively, for
h = {1, 0.5, 0.25}.

6 Conclusions

A Heaviside enriched extended stochastic FEM has been developed for solving
problems with uncertain inclusion geometry which have a discontinuous solution
across the material interface. The Heaviside enrichment leads to a discontinuous
solution in the stochastic domain, such that the degrees of freedom are nonzero (or
active) on a subdomain of the stochastic domain. The active stochastic subdomain
for each degree of freedom is determined by the spatial mesh and the random level
set function. The stochastic approximation is constructed on the active stochas-
tic subdomain for each degree of freedom, which leads to an accurate solution
and well-conditioned system of equations. A minimum bounding hyperrectangle
approximates the active stochastic subdomain, and the basis polynomials in the
stochastic approximation are transformed and normalized onto the hyperrectan-
gle. The proposed X-SFEM is best suited for a low number of random parame-
ters due to the computational cost associated with construction of the numerous
polynomial bases. Approximations of high dimensional stochastic functions with
discontinuities is a challenging and active area of research.
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The convergence and accuracy of the proposed method was demonstrated for
example problems with continuous and discontinuous solutions at the interface.
Studying problems with continuous solutions allowed a comparison to an existing
approach. The proposed Heaviside enriched X-SFEM leads to a higher conver-
gence rate for problems with continuous solutions when compared to using a C0-
continuous enrichment function. The degrees of freedom are smooth with respect
to the random parameters regardless of the spatial mesh size. Due to the smooth-
ness of the degrees of freedom, convergence in the stochastic space occurs with
low orders of the polynomial approximation. Additional advantages of using the
proposed Heaviside enrichment approach for problems with an uncertain interface
configuration are that neighboring intersected elements and elements intersected
more than once can be modeled accurately, and there are no issues with blending
elements.
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